Twisting phonons in complex crystals with quasi-one-dimensional substructures

被引:0
|
作者
Xi Chen
Annie Weathers
Jesús Carrete
Saikat Mukhopadhyay
Olivier Delaire
Derek A. Stewart
Natalio Mingo
Steven N. Girard
Jie Ma
Douglas L. Abernathy
Jiaqiang Yan
Raman Sheshka
Daniel P. Sellan
Fei Meng
Song Jin
Jianshi Zhou
Li Shi
机构
[1] Materials Science and Engineering Program,Department of Mechanical Engineering
[2] Texas Materials Institute,Materials Science and Technology Division
[3] The University of Texas at Austin,Department of Chemistry
[4] The University of Texas at Austin,Quantum Condensed Matter Division
[5] Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et les Nanomatériaux,Department of Materials Science and Engineering
[6] Commissariat à l’Énergie Atomique Grenoble,undefined
[7] Cornell Nanoscale Facility,undefined
[8] Cornell University,undefined
[9] Oak Ridge National Laboratory,undefined
[10] University of Wisconsin—Madison,undefined
[11] Oak Ridge National Laboratory,undefined
[12] University of Tennessee,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.
引用
收藏
相关论文
共 50 条
  • [41] STUDY OF MODE GRUNEISEN PARAMETERS IN VARIOUS QUASI-ONE-DIMENSIONAL CRYSTALS
    CARLONE, C
    HOTA, NK
    STOLZ, HJ
    ELBERT, M
    HOCHHEIMER, HD
    JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (07): : 3220 - 3225
  • [42] Dielectric relaxation in liquid crystals confined in a quasi-one-dimensional system
    Aliev, FM
    Bengoechea, MR
    Gao, CY
    Cochran, HD
    Dai, S
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2005, 351 (33-36) : 2690 - 2693
  • [43] PHOTOCURRENT KINETICS IN QUASI-ONE-DIMENSIONAL POLYMERIC CRYSTALS WITH RECOMBINATION CENTERS
    ONIPKO, AI
    ZOZULENKO, IV
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (49) : 9875 - 9891
  • [44] QUASI-ONE-DIMENSIONAL EXCITON CRYSTALS IN A HIGH MAGNETIC-FIELD
    KOROLEV, AV
    LIBERMAN, MA
    PHYSICS LETTERS A, 1995, 209 (3-4) : 201 - 205
  • [45] TUNNELLING MODEL FOR QUASI-ONE-DIMENSIONAL HYDROGEN-BONDED CRYSTALS
    PLASCAK, JA
    SALINAS, SR
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1982, 113 (01): : 367 - 372
  • [46] Modeling of the thermoelectric power factor in quasi-one-dimensional organic crystals
    Casian, A.
    Stockholm, J.
    Dusciac, V.
    Dusciac, R.
    Coropceanu, Iu.
    ICT'06: XXV INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS, 2006, : 414 - +
  • [47] MOLECULAR EXCITONS IN QUASI-ONE-DIMENSIONAL CONDUCTING CRYSTALS (SEMICONDUCTORS AND METALS)
    VLASOVA, RM
    KAPUSTIN, VA
    SEMKIN, VN
    SEKRETARCZYK, G
    AGROSKIN, LS
    PAPAYAN, GV
    RAUTIAN, LP
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1984, 122 (02): : 549 - 557
  • [48] Continuous structural transitions in quasi-one-dimensional classical Wigner crystals
    Piacente, G.
    Hai, G. Q.
    Peeters, F. M.
    PHYSICAL REVIEW B, 2010, 81 (02)
  • [50] THE INFLUENCE OF DEFECTS ON THE DEBYE-WALLER FACTOR IN NONIDEAL QUASI-ONE-DIMENSIONAL CRYSTALS AND QUASI-2-DIMENSIONAL CRYSTALS
    KRIVOGLAZ, MA
    KRISTALLOGRAFIYA, 1982, 27 (06): : 1056 - 1062