Twisting phonons in complex crystals with quasi-one-dimensional substructures

被引:0
|
作者
Xi Chen
Annie Weathers
Jesús Carrete
Saikat Mukhopadhyay
Olivier Delaire
Derek A. Stewart
Natalio Mingo
Steven N. Girard
Jie Ma
Douglas L. Abernathy
Jiaqiang Yan
Raman Sheshka
Daniel P. Sellan
Fei Meng
Song Jin
Jianshi Zhou
Li Shi
机构
[1] Materials Science and Engineering Program,Department of Mechanical Engineering
[2] Texas Materials Institute,Materials Science and Technology Division
[3] The University of Texas at Austin,Department of Chemistry
[4] The University of Texas at Austin,Quantum Condensed Matter Division
[5] Laboratoire d’Innovation pour les Technologies des Energies Nouvelles et les Nanomatériaux,Department of Materials Science and Engineering
[6] Commissariat à l’Énergie Atomique Grenoble,undefined
[7] Cornell Nanoscale Facility,undefined
[8] Cornell University,undefined
[9] Oak Ridge National Laboratory,undefined
[10] University of Wisconsin—Madison,undefined
[11] Oak Ridge National Laboratory,undefined
[12] University of Tennessee,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain the low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.
引用
收藏
相关论文
共 50 条
  • [1] Twisting phonons in complex crystals with quasi-one-dimensional substructures
    Chen, Xi
    Weathers, Annie
    Carrete, Jesus
    Mukhopadhyay, Saikat
    Delaire, Olivier
    Stewart, Derek A.
    Mingo, Natalio
    Girard, Steven N.
    Ma, Jie
    Abernathy, Douglas L.
    Yan, Jiaqiang
    Sheshka, Raman
    Sellan, Daniel P.
    Meng, Fei
    Jin, Song
    Zhou, Jianshi
    Shi, Li
    NATURE COMMUNICATIONS, 2015, 6
  • [2] Coherent phonons in quasi-one-dimensional organic crystals
    Hasche, T
    Canzler, TW
    Scholz, R
    Leo, K
    JOURNAL OF LUMINESCENCE, 2001, 94 (94-95) : 673 - 676
  • [3] Coherent external and internal phonons in quasi-one-dimensional organic molecular crystals
    Hasche, T
    Canzler, TW
    Scholz, R
    Hoffmann, M
    Schmidt, K
    Frauenheim, T
    Leo, K
    PHYSICAL REVIEW LETTERS, 2001, 86 (18) : 4060 - 4063
  • [4] ANNIHILATION OF EXCITONS IN QUASI-ONE-DIMENSIONAL CRYSTALS
    GAIDIDEI, YB
    THEORETICAL AND MATHEMATICAL PHYSICS, 1981, 48 (03) : 831 - 834
  • [5] Excitons in quasi-one-dimensional organic crystals
    Knupfer, M
    Schwieger, T
    Fink, J
    Leo, K
    Hoffmann, M
    PHYSICAL REVIEW B, 2002, 66 (03): : 352081 - 352085
  • [6] COOPERATIVE INTERACTIONS IN QUASI-ONE-DIMENSIONAL CRYSTALS
    IONOVA, GV
    IONOV, SP
    DOKLADY AKADEMII NAUK SSSR, 1973, 208 (01): : 128 - 130
  • [7] Diffraction from quasi-one-dimensional crystals
    Vukovic, T.
    Milosevic, I.
    Damnjanovic, M.
    PHYSICAL REVIEW B, 2009, 79 (16)
  • [8] STRUCTURAL TRANSITION IN QUASI-ONE-DIMENSIONAL CRYSTALS
    LUKIN, VP
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1981, (04): : 119 - 123
  • [9] COMPLEX CONDUCTIVITY OF TRIMERIZED QUASI-ONE-DIMENSIONAL CT CRYSTALS - ARBITRARY TRIMER
    YARTSEV, VM
    SYNTHETIC METALS, 1990, 35 (1-2) : 29 - 38
  • [10] OPTICAL PROPERTIES OF QUASI-ONE-DIMENSIONAL AND QUASI-2-DIMENSIONAL CRYSTALS
    BULAEVSKII, LN
    KUKHAREN.YA
    FIZIKA TVERDOGO TELA, 1972, 14 (08): : 2401 - +