Application of a novel ranking approach in QSPR-QSAR

被引:0
|
作者
Pablo R. Duchowicz
Eduardo A. Castro
Francisco M. Fernández
机构
[1] Universidad Nacional de La Plata,Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), División Química Teórica, Departamento de Química, Facultad de Ciencias Exactas
来源
关键词
Partial Order Ranking; QSPR-QSAR; molecular descriptor; normal boiling point; 78P05; 06P12;
D O I
暂无
中图分类号
学科分类号
摘要
In this study we present a simple algorithm based on the Partial Order Ranking (POR) technique which allows to rank a series of compounds according to their molecular descriptor values. A training set composed of 82 normal boiling points for structurally diverse organic compounds is analyzed by considering a pool of 1202 molecular descriptors obtained from the Dragon 5 software and two “flexible” type of variables. The predictive performance of the proposed approach is assessed by means of a test set of 82 “unknown” structurally related molecules.
引用
收藏
页码:620 / 636
页数:16
相关论文
共 50 条
  • [31] Activity evaluation of some psychoactive drugs with the application of QSAR/QSPR modeling methods
    Piotr Kawczak
    Leszek Bober
    Tomasz Bączek
    Medicinal Chemistry Research, 2018, 27 : 2279 - 2286
  • [32] Multilevel approach to the prediction of properties of organic compounds in the framework of the QSAR/QSPR methodology
    I. I. Baskin
    N. I. Zhokhova
    V. A. Palyulin
    A. N. Zefirov
    N. S. Zefirov
    Doklady Chemistry, 2009, 427 : 172 - 175
  • [33] A Lu index for QSAR/QSPR studies
    Lu, CH
    Guo, WM
    Hu, XF
    Wang, Y
    Yin, CS
    CHEMICAL PHYSICS LETTERS, 2006, 417 (1-3) : 11 - 15
  • [34] QSPR/QSAR computations by PRECLAV software
    Laszlo, T
    REVISTA DE CHIMIE, 2005, 56 (06): : 639 - 648
  • [35] Multilevel Approach to the Prediction of Properties of Organic Compounds in the Framework of the QSAR/QSPR Methodology
    Baskin, I. I.
    Zhokhova, N. I.
    Palyulin, V. A.
    Zefirov, A. N.
    Zefirov, N. S.
    DOKLADY CHEMISTRY, 2009, 427 : 172 - 175
  • [36] TOWARD BIG DATA IN QSAR/QSPR
    Duprat, A.
    Ploix, J. L.
    Dioury, F.
    Dreyfus, G.
    2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [37] Topological Indices in QSAR and QSPR - Foreword
    Devillers, J
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2001, 12 (1-2) : I - I
  • [38] Research of QSPR/QSAR for Ionic Liquids
    Zhao Yongsheng
    Zhang Xiangping
    Zhao Jihong
    Zhang Hongzhong
    Kang Xuejing
    Dong Feng
    PROGRESS IN CHEMISTRY, 2012, 24 (07) : 1236 - 1244
  • [39] Current Challenges in QSAR/QSPR Analysis
    Putz, Mihai V.
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2014, 10 (02) : 97 - 98
  • [40] A combined QSAR and partial order ranking approach to risk assessment
    Carlsen, L.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2006, 17 (02) : 133 - 146