Time reversal and exceptional points

被引:0
|
作者
H. L. Harney
W. D. Heiss
机构
[1] Max-Planck-Institut für Kernphysik,Department of Physics
[2] University of Stellenbosch,undefined
来源
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics | 2004年 / 29卷
关键词
Symmetry Breaking; Quantum System; Time Reversal; Time Reversal Symmetry; Exceptional Point;
D O I
暂无
中图分类号
学科分类号
摘要
Eigenvectors of decaying quantum systems are studied at exceptional points of the Hamiltonian. Special attention is paid to the properties of the system under time reversal symmetry breaking. At the exceptional point the chiral character of the system -- found for time reversal symmetry -- generically persists. It is, however, no longer circular but rather elliptic.
引用
收藏
页码:429 / 432
页数:3
相关论文
共 50 条
  • [31] Floquet Engineering the Exceptional Points in Parity-Time-Symmetric Magnonics
    Wang, Xi-guang
    Zeng, Lu-lu
    Guo, Guang-hua
    Berakdar, Jamal
    PHYSICAL REVIEW LETTERS, 2023, 131 (18)
  • [32] Exceptional points in time-varying oscillators with enhanced sensing sensitivity
    Jin, Yabin
    Li, Wenjun
    Djafari-Rouhani, Bahram
    Torrent, Daniel
    Xiang, Yanxun
    Xuan, Fu-Zhen
    PHYSICAL REVIEW APPLIED, 2024, 22 (03):
  • [33] Theory of Periodically Time-Varying Induced Exceptional Points of Degeneracy
    Kazemi, H.
    Nada, M. Y.
    Marosi, R.
    Mealy, T.
    Abdelshafy, A.
    Capolino, F.
    2019 THIRTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS)), 2019, : 190 - 192
  • [34] Nonreciprocal coupling in space-time modulated systems at exceptional points
    Li, Junfei
    Jing, Yun
    Cummer, Steven A.
    PHYSICAL REVIEW B, 2022, 105 (10)
  • [35] Observation of exceptional points in magnonic parity-time symmetry devices
    Liu, Haoliang
    Sun, Dali
    Zhang, Chuang
    Groesbeck, Matthew
    Mclaughlin, Ryan
    Vardeny, Z. Valy
    SCIENCE ADVANCES, 2019, 5 (11):
  • [36] Topological states at exceptional points
    Yuce, C.
    PHYSICS LETTERS A, 2019, 383 (22) : 2567 - 2570
  • [37] Unitarity corridors to exceptional points
    Znojil, Miloslav
    PHYSICAL REVIEW A, 2019, 100 (03)
  • [38] Quantum interference and exceptional points
    Longhi, S.
    OPTICS LETTERS, 2018, 43 (21) : 5371 - 5374
  • [39] Lebesgue density and exceptional points
    Andretta, Alessandro
    Camerlo, Riccardo
    Costantini, Camillo
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 118 (01) : 103 - 142
  • [40] Exceptional points in oligomer chains
    Charles Andrew Downing
    Vasil Arkadievich Saroka
    Communications Physics, 4