Positivity and Stability of Rational Cubic Fractal Interpolation Surfaces

被引:0
|
作者
Vijender Nallapu
机构
[1] VIT University Chennai,School of Advanced Sciences
来源
关键词
Cubic splines; rational fractals; rational cubic fractal interpolation surfaces; stability; positivity; 65D05; 65D07; 65D10; 65D17; 41A20; 28A80; 34B41; 54C56;
D O I
暂无
中图分类号
学科分类号
摘要
Fractal interpolation has become popular in 2D and 3D data visualization to model a wide variety of physical phenomena. The purpose of this paper is to present a promising new class of positivity preserving C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {C}^1$$\end{document}-rational cubic spline fractal interpolation surfaces (FISs) to stitch surface data arranged over a rectangular grid. We develop the rational cubic FIS as a combination of blending functions and the rational fractal boundary curves that are constructed along the grid lines of the interpolation domain. We investigate the stability results of the rational cubic FIS with respect to its independent and dependent variables, and the corresponding first order partial derivatives at knots. We identify the scaling factors and shape parameters so that the positivity feature of given data along the grid lines is translated to the corresponding rational fractal boundary curves. In particular, our rational cubic FIS is positive whenever the corresponding fractal boundary curves are positive. Numerical examples are provided to illustrate: (i) the construction of positive rational cubic FISs for a given positive surface data, (ii) the effects on the shape of the positive rational cubic FIS due to the changes in the scaling factors or/and shape parameters, and (iii) the stability results of the proposed rational cubic FIS.
引用
收藏
相关论文
共 50 条
  • [41] Closed fractal interpolation surfaces
    Bouboulis, P.
    Dalla, L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 116 - 126
  • [42] On cubic surfaces with a rational line
    Elsenhans, Andreas-Stephan
    Jahnel, Joerg
    ARCHIV DER MATHEMATIK, 2012, 98 (03) : 229 - 234
  • [43] On cubic surfaces with a rational line
    Andreas-Stephan Elsenhans
    Jörg Jahnel
    Archiv der Mathematik, 2012, 98 : 229 - 234
  • [44] On the rational points on cubic surfaces
    Hooley, C
    GLASGOW MATHEMATICAL JOURNAL, 2000, 42 : 225 - 237
  • [45] POSITIVITY OF CUBIC POLYNOMIALS ON INTERVALS AND POSITIVE SPLINE INTERPOLATION
    SCHMIDT, JW
    HESS, W
    BIT, 1988, 28 (02): : 340 - 352
  • [46] CUBIC SPLINE SUPER FRACTAL INTERPOLATION FUNCTIONS
    Kapoor, G. P.
    Prasad, Srijanani Anurag
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2014, 22 (1-2) : 1 - 2
  • [47] Generalized cubic spline fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) : 655 - 676
  • [48] Positivity-preserving rational bi-cubic spline interpolation for 3D positive data
    Abbas, Muhammad
    Abd. Majid, Ahmad
    Ali, Jamaludin Md.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 460 - 476
  • [49] A C1-Rational Cubic Fractal Interpolation Function: Convergence and Associated Parameter Identification Problem
    Viswanathan, P.
    Chand, A. K. B.
    ACTA APPLICANDAE MATHEMATICAE, 2015, 136 (01) : 19 - 41
  • [50] Construction of fractal surfaces by recurrent fractal interpolation curves
    Yun, Chol-hui
    O, Hyong-chol
    Choi, Hui-chol
    CHAOS SOLITONS & FRACTALS, 2014, 66 : 136 - 143