Tail entropy and hyperbolicity of measures

被引:0
|
作者
Gang Liao
机构
[1] Soochow University,School of Mathematical Sciences, Center for Dynamical Systems and Differential Equations
来源
Collectanea Mathematica | 2019年 / 70卷
关键词
Tail entropy; Hyperbolicity; Upper semi-continuity; 37A35; 37D25; 37C40;
D O I
暂无
中图分类号
学科分类号
摘要
We study the relationship between the tail entropy and the hyperbolicity of invariant measures. An upper bound of the tail entropy is given in terms of the hyperbolic index.
引用
收藏
页码:347 / 356
页数:9
相关论文
共 50 条
  • [21] NON-HYPERBOLICITY AND INVARIANT-MEASURES FOR UNIMODAL MAPS
    NOWICKI, T
    VANSTRIEN, S
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1990, 53 (04): : 427 - 429
  • [22] Tail Risk Constraints and Maximum Entropy
    Geman, Donald
    Geman, Helyette
    Taleb, Nassim Nicholas
    ENTROPY, 2015, 17 (06): : 3724 - 3737
  • [23] Tail processes and tail measures: An approach via Palm calculus
    Last, Guenter
    EXTREMES, 2023, 26 (04) : 715 - 746
  • [24] Tail processes and tail measures: An approach via Palm calculus
    Günter Last
    Extremes, 2023, 26 : 715 - 746
  • [25] Classifying Entropy Measures
    Garrido, Angel
    SYMMETRY-BASEL, 2011, 3 (03): : 487 - 502
  • [26] NORMALIZED MEASURES OF ENTROPY
    KUMAR, U
    KUMAR, V
    KAPUR, JN
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 1986, 12 (01) : 55 - 69
  • [27] ENTROPY MEASURES OF INEQUALITY
    BAILEY, KD
    SOCIOLOGICAL INQUIRY, 1985, 55 (02) : 200 - 211
  • [28] On the entropy of fuzzy measures
    Yager, RR
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (04) : 453 - 461
  • [29] Entropy Coherent and Entropy Convex Measures of Risk
    Laeven, Roger J. A.
    Stadje, Mitja
    MATHEMATICS OF OPERATIONS RESEARCH, 2013, 38 (02) : 265 - 293
  • [30] Non-uniform hyperbolicity and existence of absolutely continuous invariant measures
    Solano, Javier
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (01): : 67 - 103