Existence of positive solutions for the singular fractional differential equations

被引:9
|
作者
Guo L. [1 ]
Zhang X. [1 ]
机构
[1] School of Mathematics, Liaocheng University, Liaocheng
来源
Zhang, X. (zhxq197508@163.com) | 1600年 / Springer Verlag卷 / 44期
基金
中国国家自然科学基金;
关键词
Avery-Peterson fixed point theorem; Fractional differential equation; Fractional Green's function; Positive solution;
D O I
10.1007/s12190-013-0689-6
中图分类号
学科分类号
摘要
In this paper, we consider the following two-point fractional boundary value problem. We provide sufficient conditions for the existence of multiple positive solutions for the following boundary value problems that the nonlinear terms contain i-order derivative cD0+α u(t) + f(t, u(t), u'(t),⋯, ui(t)) = 0, 0 < t < 1, u(0) = u'(0) = ⋯ = ui-1(0) = ui+1 (0) = ⋯ u(n-1)(0) = 0, ui(1) = 0, where n-1<α≤n is a real number, n is natural number and n≥2, α-i>1, i×N and 0≤i≤n-1. cD0+α is the standard Caputo derivative. f(t,x 0,x 1,.,x i ) may be singular at t=0. © 2013 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:215 / 228
页数:13
相关论文
共 50 条