A mixed-model approach for genome-wide association studies of correlated traits in structured populations

被引:0
|
作者
Arthur Korte
Bjarni J Vilhjálmsson
Vincent Segura
Alexander Platt
Quan Long
Magnus Nordborg
机构
[1] Gregor Mendel Institute,Department of Molecular and Computational Biology
[2] Austrian Academy of Sciences,undefined
[3] University of Southern California,undefined
[4] Institut National de la Recherche Agronomique (INRA),undefined
[5] UR0588,undefined
来源
Nature Genetics | 2012年 / 44卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Magnus Nordborg and colleagues report a parameterized multi-trait mixed model (MTMM) method applied to genome-wide association studies of correlated phenotypes. They test this approach, using both human and Arabidopsis thaliana data sets, and demonstrate how it can be used to identify pleiotropic loci and gene by environment interactions.
引用
收藏
页码:1066 / 1071
页数:5
相关论文
共 50 条
  • [1] A mixed-model approach for genome-wide association studies of correlated traits in structured populations
    Korte, Arthur
    Vilhjalmsson, Bjarni J.
    Segura, Vincent
    Platt, Alexander
    Long, Quan
    Nordborg, Magnus
    NATURE GENETICS, 2012, 44 (09) : 1066 - +
  • [2] An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations
    Vincent Segura
    Bjarni J Vilhjálmsson
    Alexander Platt
    Arthur Korte
    Ümit Seren
    Quan Long
    Magnus Nordborg
    Nature Genetics, 2012, 44 : 825 - 830
  • [3] An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations
    Segura, Vincent
    Vilhjalmsson, Bjarni J.
    Platt, Alexander
    Korte, Arthur
    Seren, Uemit
    Long, Quan
    Nordborg, Magnus
    NATURE GENETICS, 2012, 44 (07) : 825 - U144
  • [4] Genome-wide efficient mixed-model analysis for association studies
    Xiang Zhou
    Matthew Stephens
    Nature Genetics, 2012, 44 : 821 - 824
  • [5] Genome-wide efficient mixed-model analysis for association studies
    Zhou, Xiang
    Stephens, Matthew
    NATURE GENETICS, 2012, 44 (07) : 821 - U136
  • [6] Genome-wide barebones regression scan for mixed-model association analysis
    Jin Gao
    Xuefei Zhou
    Zhiyu Hao
    Li Jiang
    Runqing Yang
    Theoretical and Applied Genetics, 2020, 133 : 51 - 58
  • [7] Hierarchical mixed-model expedites genome-wide longitudinal association analysis
    Zhang, Ying
    Song, Yuxin
    Gao, Jin
    Zhang, Hengyu
    Yang, Ning
    Yang, Runqing
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
  • [8] Genome-wide barebones regression scan for mixed-model association analysis
    Gao, Jin
    Zhou, Xuefei
    Hao, Zhiyu
    Jiang, Li
    Yang, Runqing
    THEORETICAL AND APPLIED GENETICS, 2020, 133 (01) : 51 - 58
  • [9] Mixed linear model approach adapted for genome-wide association studies
    Zhang, Zhiwu
    Ersoz, Elhan
    Lai, Chao-Qiang
    Todhunter, Rory J.
    Tiwari, Hemant K.
    Gore, Michael A.
    Bradbury, Peter J.
    Yu, Jianming
    Arnett, Donna K.
    Ordovas, Jose M.
    Buckler, Edward S.
    NATURE GENETICS, 2010, 42 (04) : 355 - U118
  • [10] Mixed linear model approach adapted for genome-wide association studies
    Zhiwu Zhang
    Elhan Ersoz
    Chao-Qiang Lai
    Rory J Todhunter
    Hemant K Tiwari
    Michael A Gore
    Peter J Bradbury
    Jianming Yu
    Donna K Arnett
    Jose M Ordovas
    Edward S Buckler
    Nature Genetics, 2010, 42 : 355 - 360