Moser-type trace inequalities for generalized Lorentz–Sobolev spaces

被引:0
|
作者
Robert Černý
机构
[1] Charles University,Department of Mathematical Analysis
来源
关键词
Lorentz–Sobolev spaces; Embedding theorems; Sharp constants; Moser-type inequality; 46E35; 46E30; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
We give sharp constants concerning exponential and multiple exponential inequalities corresponding to the limiting case of the Sobolev inequalities in generalized Lorentz–Sobolev spaces involving a general class of measures in domains Ω⊂Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset \mathbb R^n$$\end{document}. The results are general enough to include the Moser-type inequalities for smooth submanifolds of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}, fractal subsets of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} or trace inequalities on ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document}.
引用
收藏
页码:303 / 357
页数:54
相关论文
共 50 条
  • [21] On the Existence of Extremals for Moser-Type Inequalities in Gauss Space
    Cianchi, Andrea
    Musil, Vit
    Pick, Lubos
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (02) : 1494 - 1537
  • [22] Interpolation inequalities in function spaces of Sobolev-Lorentz type
    Byeon, Jaeseong
    Kim, Hyunseok
    Oh, Jisu
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 516 (02)
  • [23] Refined Sobolev Inequalities in Lorentz Spaces
    Bahouri, Hajer
    Cohen, Albert
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (04) : 662 - 673
  • [24] Refined Sobolev Inequalities in Lorentz Spaces
    Hajer Bahouri
    Albert Cohen
    [J]. Journal of Fourier Analysis and Applications, 2011, 17 : 662 - 673
  • [25] Moser type inequalities for higher-order derivatives in Lorentz spaces
    Alberico, Angela
    [J]. POTENTIAL ANALYSIS, 2008, 28 (04) : 389 - 400
  • [26] Moser Type Inequalities for Higher-Order Derivatives in Lorentz Spaces
    Angela Alberico
    [J]. Potential Analysis, 2008, 28 : 389 - 400
  • [27] Sobolev Type Inequalities, Euler–Hilbert–Sobolev and Sobolev–Lorentz–Zygmund Spaces on Homogeneous Groups
    Michael Ruzhansky
    Durvudkhan Suragan
    Nurgissa Yessirkegenov
    [J]. Integral Equations and Operator Theory, 2018, 90
  • [28] A note on Sobolev inequalities and limits of Lorentz spaces
    Martin, Joaquim
    Milman, Mario
    [J]. INTERPOLATION THEORY AND APPLICATIONS, 2007, 445 : 237 - +
  • [29] ON WEAK CONTINUITY OF THE MOSER FUNCTIONAL IN LORENTZ-SOBOLEV SPACES
    Cerny, Robert
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (03) : 757 - 788
  • [30] Sobolev-type spaces from generalized Poincare inequalities
    Heikkinen, Tom
    Koskela, Pekka
    Tuominen, Hem
    [J]. STUDIA MATHEMATICA, 2007, 181 (01) : 1 - 16