On a separable weak version of the bounded approximation property

被引:0
|
作者
Eve Oja
机构
[1] University of Tartu,Institute of Mathematics and Statistics
[2] Estonian Academy of Sciences,undefined
来源
Archiv der Mathematik | 2016年 / 107卷
关键词
Banach spaces; Bounded approximation properties; Separability; Primary: 46B28; Secondary: 46B20;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Lee introduced and studied the separable weak bounded approximation property (BAP). Lee proved that the separable weak BAP of X∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X^*}$$\end{document}, the dual space of a Banach space X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X}$$\end{document}, coincides with the BAP of X∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X^*}$$\end{document} whenever X∗∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${X^{**}}$$\end{document} has the weak Radon–Nikodým property. We show that the separable weak BAP and the BAP are always the same properties.
引用
收藏
页码:185 / 189
页数:4
相关论文
共 50 条