Existence of Wave Operators with Time-Dependent Modifiers for the Schrödinger Equations with Long-Range Potentials on Scattering Manifolds

被引:0
|
作者
Shinichiro Itozaki
机构
[1] University of Tokyo,Graduate School of Mathematical Sciences
[2] Mitsubishi UFJ Morgan Stanley Securities Co.,Quants Research Department, Financial Engineering Division
[3] Ltd.,undefined
来源
Annales Henri Poincaré | 2013年 / 14卷
关键词
Manifold; Jacobi Equation; Wave Operator; Classical Trajectory; Partial Isometry;
D O I
暂无
中图分类号
学科分类号
摘要
We construct time-dependent wave operators for Schrödinger equations with long-range potentials on a manifold M with asymptotically conic structure. We use the two space scattering theory formalism, and a reference operator on a space of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} \times \partial M}$$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\partial M}$$\end{document} is the boundary of M at infinity. We construct exact solutions to the Hamilton–Jacobi equation on the reference system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R} \times \partial M}$$\end{document} and prove the existence of the modified wave operators.
引用
收藏
页码:709 / 736
页数:27
相关论文
共 50 条