In this paper we establish dispersive estimates for solutions to the linear Schrödinger equation in three dimensions 0.1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{1}{i}\partial_t \psi - \triangle \psi + V\psi = 0,\qquad \psi(s)=f$$\end{document} where V(t,x) is a time-dependent potential that satisfies the conditions \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sup_{t}\|V(t,\cdot)\|_{L^{\frac{3}{2}}(\mathbb{R}^3)} + \sup_{x\in\mathbb{R}^3}\int_{\mathbb{R}^3} \int_{-\infty}^\infty\frac{|V(\hat{\tau},x)|}{|x-y|}\,d\tau\,dy < c_0.$$\end{document} Here c0 is some small constant and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$V(\hat{\tau},x$)\end{document} denotes the Fourier transform with respect to the first variable. We show that under these conditions (0.1) admits solutions ψ(·)∈L∞t(L2x(ℝ3))∩L2t(L6x(ℝ3)) for any f∈L2(ℝ3) satisfying the dispersive inequality 0.2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\|\psi(t)\|_{\infty} \le C|t-s|^{-\frac32}\,\|f\|_1 \text{\ \ for all times $t,s$.}$$\end{document} For the case of time independent potentials V(x), (0.2) remains true if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\int_{\mathbb{R}^6} \frac{|V(x)|\;|V(y)|}{|x-y|^2} \, dxdy <(4\pi)^2\text{\ \ \ and\ \ \ }\|V\|_{\mathcal{K}}:=\sup_{x\in\mathbb{R}^3}\int_{\mathbb{R}^3} \frac{|V(y)|}{|x-y|}\,dy<4\pi.$$\end{document} We also establish the dispersive estimate with an ε-loss for large energies provided \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\|V\|_{\mathcal{K}}+\|V\|_2<\infty$\end{document}.