Finite-difference time-domain analysis of unmagnetized plasma photonic crystals

被引:70
|
作者
Liu S. [1 ,2 ]
Hong W. [2 ]
Yuan N. [3 ]
机构
[1] College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing
[2] State Key Laboratory of Millimeter Waves, Southeast University, Nanjing
[3] Institute of Electronic Science and Engineering, National University of Defense Technology, Changsha
关键词
Finite-difference time-domain; Frequency dispersion; Plasma; Plasma photonic crystals;
D O I
10.1007/s10762-006-9075-x
中图分类号
学科分类号
摘要
The plasma photonic crystal is a periodic array composed of alternating thin unmagnetized (or magnetized) plasmas and dielectric materials (or vacuum). In this paper, the piecewise linear current density recursive convolution finite-difference time-domain method for the simulation of isotropic unmagnetized plasma is applied to model unmagnetized plasma photonic crystal structures. A perfectly matched layer absorbing material is used in these simulations. In time-domain, the electromagnetic propagation process of a Gaussian pulse through an unmagnetized plasma photonic crystal is investigated. In frequency-domain, the reflection and transmission coefficients through unmagnetized plasma photonic crystals are computed and their dependence on plasma frequency, plasma thickness, collision frequency is studied. The results show theoretically that the electromagnetic bandgaps of unmagnetized plasma photonic crystals are tuned by the plasma parameters. © Springer Science+Business Media, LLC 2006.
引用
收藏
页码:403 / 423
页数:20
相关论文
共 50 条
  • [1] Modified Finite-Difference Time-Domain Method for Triangular Lattice Photonic Crystals
    Umenyi, Amarachukwu Valentine
    Miura, Kenta
    Hanaizumi, Osamu
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (22) : 4995 - 5001
  • [2] Simple Finite-Difference Time-Domain Method for Triangular Lattice Photonic Crystals
    Umenyi, Amarachukwu V.
    Miura, Kenta
    Hanaizumi, Osamu
    2009 14TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2009), 2009, : 818 - 819
  • [3] Research on the moving plasma photonic crystals based on the novel symplectic finite-difference time-domain method
    Gao, Ying-Jie
    Ye, Quan-Yi
    Zhang, Jin
    OPTIK, 2020, 218
  • [4] Analysis of photonic crystal filters by the finite-difference time-domain technique
    Wu, BI
    Yang, E
    Kong, JA
    Oswald, JA
    McIntosh, KA
    Mahoney, L
    Verghese, S
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2000, 27 (02) : 81 - 87
  • [5] Finite-Difference Time-Domain Analysis of Tapered Photonic Crystal Fiber
    Ali, M. I. Md
    Sanusidin, S. N.
    Yusof, M. H. M.
    INTERNATIONAL CONFERENCE ON APPLIED ELECTRONIC AND ENGINEERING 2017 (ICAEE2017), 2018, 341
  • [6] The electromagnetic waves propagation in unmagnetized plasma media using parallelized finite-difference time-domain method
    Xiong, Lang-lang
    Wang, Xi-min
    Liu, Song
    Peng, Zhi-yun
    Zhong, Shuang-ying
    OPTIK, 2018, 166 : 8 - 14
  • [7] Finite-difference time-domain modelling of photonic crystal structures
    de Ridder, RM
    Stoffer, R
    ICTON 2001: 3RD INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, CONFERENCE PROCEEDINGS, 2001, : 22 - 25
  • [8] A finite-difference time-domain method for the simulation of gain materials with carrier diffusion in photonic crystals
    Pernice, Wolfram H. P.
    Payne, Frank P.
    Gallagher, Dominic E. G.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2007, 25 (09) : 2306 - 2314
  • [9] Finite-difference time-domain methods
    Teixeira, F. L.
    Sarris, C.
    Zhang, Y.
    Na, D. -Y.
    Berenger, J. -P.
    Su, Y.
    Okoniewski, M.
    Chew, W. C.
    Backman, V.
    Simpson, J. J.
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [10] Finite-difference time-domain methods
    F. L. Teixeira
    C. Sarris
    Y. Zhang
    D.-Y. Na
    J.-P. Berenger
    Y. Su
    M. Okoniewski
    W. C. Chew
    V. Backman
    J. J. Simpson
    Nature Reviews Methods Primers, 3