A finite-difference time-domain method for the simulation of gain materials with carrier diffusion in photonic crystals

被引:12
|
作者
Pernice, Wolfram H. P.
Payne, Frank P.
Gallagher, Dominic E. G.
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[2] Photon Design, Oxford OX4 1TW, England
关键词
finite-difference time-domain (FDTD) method; nonlinear gain; photonic crystal (PC) laser;
D O I
10.1109/JLT.2007.901446
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a finite-difference time,domain formulation for active gain materials. Our scheme is based on a frequency-dependent conductivity. Experimental material gain is fitted with high accuracy to a multipole Lorentzian model using a sernideterministic fitting algorithm. Because our model is an approximation to the full vectorial Maxwell's system of equations, we include carrier diffusion into the rate equations for a two-level system. The material gain is included into the standard set of Maxwell's equations by linking the frequency-dependent conductivity to the rate equations. Lasing is demonstrated for a vertical-cavity-surface-emitting-laser structure and photonic crystal lasers.
引用
收藏
页码:2306 / 2314
页数:9
相关论文
共 50 条
  • [1] Modified Finite-Difference Time-Domain Method for Triangular Lattice Photonic Crystals
    Umenyi, Amarachukwu Valentine
    Miura, Kenta
    Hanaizumi, Osamu
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (22) : 4995 - 5001
  • [2] Simple Finite-Difference Time-Domain Method for Triangular Lattice Photonic Crystals
    Umenyi, Amarachukwu V.
    Miura, Kenta
    Hanaizumi, Osamu
    [J]. 2009 14TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC 2009), 2009, : 818 - 819
  • [3] Finite-difference time-domain analysis of unmagnetized plasma photonic crystals
    Liu, Shaobin
    Hong, Wei
    Yuan, Naichang
    [J]. INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2006, 27 (03): : 403 - 423
  • [4] Finite-difference time-domain analysis of unmagnetized plasma photonic crystals
    Liu S.
    Hong W.
    Yuan N.
    [J]. International Journal of Infrared and Millimeter Waves, 2006, 27 (3): : 403 - 423
  • [5] Applicability of the finite-difference time-domain method to photonic crystal structures
    de Ridder, RM
    Stoffer, R
    [J]. NANOSCALE LINEAR AND NONLINEAR OPTICS, 2001, 560 : 99 - 106
  • [6] Simulation of active and nonlinear photonic nano-materials in the finite-difference time-domain (FDTD) framework
    Klaedtke, A
    Hamm, J
    Hess, O
    [J]. COMPUTATIONAL MATERIALS SCIENCE: FROM BASIC PRINCIPLES TO MATERIAL PROPERTIES, 2004, : 75 - 101
  • [7] On the stability of the finite-difference time-domain method
    Remis, RF
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (01) : 249 - 261
  • [8] A SEMIVECTORIAL FINITE-DIFFERENCE TIME-DOMAIN METHOD
    HUANG, WP
    CHU, ST
    CHAUDHURI, SK
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 1991, 3 (09) : 803 - 806
  • [9] Research on the moving plasma photonic crystals based on the novel symplectic finite-difference time-domain method
    Gao, Ying-Jie
    Ye, Quan-Yi
    Zhang, Jin
    [J]. OPTIK, 2020, 218
  • [10] Improvements in the simulation of absorbing boundaries for the finite-difference time-domain method
    Calve, N
    Ros, AE
    [J]. IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 1912 - 1915