Almost Ricci-flat;
Kummer-type construction;
Collapsing;
Primary 53C20;
Secondary 53C25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
A smooth closed manifold M is called almost Ricci-flat if infg||Ricg||∞·diamg(M)2=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \inf _g||\text {Ric}_g||_\infty \cdot \text {diam}_g(M)^2=0 \end{aligned}$$\end{document}where Ricg\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {Ric}_g$$\end{document} and diamg\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {diam}_g$$\end{document}, respectively, denote the Ricci tensor and the diameter of g and g runs over all Riemannian metrics on M. By using Kummer-type method, we construct a smooth closed almost Ricci-flat nonspin 5-manifold M which is simply connected. It is minimal volume vanishes; namely, it collapses with sectional curvature bounded.