Structure of Quasivariety Lattices. I. Independent Axiomatizability

被引:0
|
作者
A. V. Kravchenko
A. M. Nurakunov
M. V. Schwidefsky
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University,undefined
[3] Siberian Institute of Management,undefined
[4] Novosibirsk State Technical University,undefined
[5] Institute of Mathematics,undefined
[6] National Academy of Science of the Kyrgyz Republic,undefined
来源
Algebra and Logic | 2019年 / 57卷
关键词
independent basis; quasi-identity; quasivariety; quasivariety lattice; Q-universality;
D O I
暂无
中图分类号
学科分类号
摘要
We find a sufficient condition for a quasivariety K to have continuum many subquasivarieties that have no independent quasi-equational bases relative to K but have ω-independent quasi-equational bases relative to K. This condition also implies that K is Q-universal.
引用
收藏
页码:445 / 462
页数:17
相关论文
共 50 条
  • [31] Notes on planar semimodular lattices. VI. On the structure theorem of planar semimodular lattices
    Graetzer, G.
    ALGEBRA UNIVERSALIS, 2013, 69 (04) : 301 - 304
  • [32] Notes on planar semimodular lattices. VI. On the structure theorem of planar semimodular lattices
    G. Grätzer
    Algebra universalis, 2013, 69 : 301 - 304
  • [33] Independent subcontexts and blocks of concept lattices. Definitions and relationships to decompose fuzzy contexts
    Aragon, Roberto G.
    Medina, Jesus
    Ramirez-Poussa, Eloisa
    FUZZY SETS AND SYSTEMS, 2025, 509
  • [34] Notes on sectionally complemented lattices.: I characterizing the 1960 sectional complement
    Grätzer, G
    Lakser, H
    ACTA MATHEMATICA HUNGARICA, 2005, 108 (1-2) : 117 - 127
  • [35] Superfluidity and pairing phenomena in ultracold atomic Fermi gases in one-dimensional optical lattices. I. Balanced case
    Wang, Jibiao
    Zhang, Leifeng
    Yu, Yi
    Lee, Chaohong
    Chen, Qijin
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [36] Type ⟨1,1⟩ fuzzy quantifiers determined by fuzzy measures on residuated lattices. Part I. Basic definitions and examples
    Dvorak, Antonin
    Holcapek, Michal
    FUZZY SETS AND SYSTEMS, 2014, 242 : 31 - 55
  • [37] Critical frontier of the Potts and percolation models on triangular-type and kagome-type lattices. I. Closed-form expressions
    Wu, F. Y.
    PHYSICAL REVIEW E, 2010, 81 (06):
  • [38] STONE LATTICES .I. CONSTRUCTION THEOREMS
    CHEN, CC
    GRATZER, G
    CANADIAN JOURNAL OF MATHEMATICS, 1969, 21 (04): : 884 - &
  • [39] ENUMERATION OF CRYSTAL-STRUCTURE TYPES USING A FINITE SUPERGROUP OF ALL THE BRAVAIS LATTICES.
    Hosoya, Masahiko
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1999, 55 : 571 - 571
  • [40] A coupled discrete/continuous method for computing lattices. Application to a masonry-like structure
    Hammoud, Mohammad
    Sab, Karam
    Duhamel, Denis
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (21) : 3091 - 3098