Structure of Quasivariety Lattices. I. Independent Axiomatizability

被引:0
|
作者
A. V. Kravchenko
A. M. Nurakunov
M. V. Schwidefsky
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University,undefined
[3] Siberian Institute of Management,undefined
[4] Novosibirsk State Technical University,undefined
[5] Institute of Mathematics,undefined
[6] National Academy of Science of the Kyrgyz Republic,undefined
来源
Algebra and Logic | 2019年 / 57卷
关键词
independent basis; quasi-identity; quasivariety; quasivariety lattice; Q-universality;
D O I
暂无
中图分类号
学科分类号
摘要
We find a sufficient condition for a quasivariety K to have continuum many subquasivarieties that have no independent quasi-equational bases relative to K but have ω-independent quasi-equational bases relative to K. This condition also implies that K is Q-universal.
引用
收藏
页码:445 / 462
页数:17
相关论文
共 50 条
  • [1] Structure of Quasivariety Lattices. I. Independent Axiomatizability
    Kravchenko, A. V.
    Nurakunov, A. M.
    Schwidefsky, M. V.
    ALGEBRA AND LOGIC, 2019, 57 (06) : 445 - 462
  • [2] THE COMPLEXITY OF QUASIVARIETY LATTICES. II
    Schwidefsky, M. V.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (01): : 501 - 513
  • [3] Structure of Quasivariety Lattices. IV. Nonstandard Quasivarieties
    Kravchenko, A., V
    Nurakunov, A. M.
    Schwidefsky, M., V
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (05) : 850 - 858
  • [4] Structure of Quasivariety Lattices. IV. Nonstandard Quasivarieties
    A. V. Kravchenko
    A. M. Nurakunov
    M. V. Schwidefsky
    Siberian Mathematical Journal, 2021, 62 : 850 - 858
  • [5] Structure of Quasivariety Lattices. II. Undecidable Problems
    Kravchenko, A. V.
    Nurakunov, A. M.
    Schwidefsky, M. V.
    ALGEBRA AND LOGIC, 2019, 58 (02) : 123 - 136
  • [6] Structure of Quasivariety Lattices. II. Undecidable Problems
    A. V. Kravchenko
    A. M. Nurakunov
    M. V. Schwidefsky
    Algebra and Logic, 2019, 58 : 123 - 136
  • [7] Structure of Quasivariety Lattices. III. Finitely Partitionable Bases
    A. V. Kravchenko
    A. M. Nurakunov
    M. V. Schwidefsky
    Algebra and Logic, 2020, 59 : 222 - 229
  • [8] Structure of Quasivariety Lattices. III. Finitely Partitionable Bases
    Kravchenko, A., V
    Nurakunov, A. M.
    Schwidefsky, M., V
    ALGEBRA AND LOGIC, 2020, 59 (03) : 222 - 229
  • [9] Lattices embeddable in subsemigroup lattices. I. Semilattices
    Semenova M.V.
    Algebra and Logic, 2006, 45 (2) : 124 - 133
  • [10] Slim Semimodular Lattices. I. A Visual Approach
    Czedli, Gabor
    Schmidt, E. Tamas
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (03): : 481 - 497