Structured feature selection and task relationship inference for multi-task learning

被引:0
|
作者
Hongliang Fei
Jun Huan
机构
[1] University of Kansas,EECS Department
来源
关键词
Multi-task learning; Task relationship inference; Structured input and structured output; Structural sparsity;
D O I
暂无
中图分类号
学科分类号
摘要
Multi-task learning (MTL) aims to enhance the generalization performance of supervised regression or classification by learning multiple related tasks simultaneously. In this paper, we aim to extend the current MTL techniques to high dimensional data sets with structured input and structured output (SISO), where the SI means the input features are structured and the SO means the tasks are structured. We investigate a completely ignored problem in MTL with SISO data: the interplay of structured feature selection and task relationship modeling. We hypothesize that combining the structure information of features and task relationship inference enables us to build more accurate MTL models. Based on the hypothesis, we have designed an efficient learning algorithm, in which we utilize a task covariance matrix related to the model parameters to capture the task relationship. In addition, we design a regularization formulation for incorporating the structured input features in MTL. We have developed an efficient iterative optimization algorithm to solve the corresponding optimization problem. Our algorithm is based on the accelerated first order gradient method in conjunction with the projected gradient scheme. Using two real-world data sets, we demonstrate the utility of the proposed learning methods.
引用
收藏
页码:345 / 364
页数:19
相关论文
共 50 条
  • [1] Structured feature selection and task relationship inference for multi-task learning
    Fei, Hongliang
    Huan, Jun
    KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 35 (02) : 345 - 364
  • [2] NONPARAMETRIC BAYESIAN FEATURE SELECTION FOR MULTI-TASK LEARNING
    Li, Hui
    Liao, Xuejun
    Carin, Lawrence
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2236 - 2239
  • [3] Probabilistic Joint Feature Selection for Multi-task Learning
    Xiong, Tao
    Bi, Jinbo
    Rao, Bharat
    Cherkassky, Vladimir
    PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 332 - +
  • [4] Learning Task Relational Structure for Multi-Task Feature Learning
    Wang, De
    Nie, Feiping
    Huang, Heng
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1239 - 1244
  • [5] Feature Selection and Multi-task Learning for Pedestrian Crossing Prediction
    Schoerkhuber, Dominik
    Proell, Maximilian
    Gelautz, Margrit
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 439 - 444
  • [6] Convex multi-task feature learning
    Andreas Argyriou
    Theodoros Evgeniou
    Massimiliano Pontil
    Machine Learning, 2008, 73 : 243 - 272
  • [7] Variable Selection and Task Grouping for Multi-Task Learning
    Jeong, Jun-Yong
    Jun, Chi-Hyuck
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1589 - 1598
  • [8] Convex multi-task feature learning
    Argyriou, Andreas
    Evgeniou, Theodoros
    Pontil, Massimiliano
    MACHINE LEARNING, 2008, 73 (03) : 243 - 272
  • [9] Multi-Task Feature Interaction Learning
    Lin, Kaixiang
    Xu, Jianpeng
    Baytas, Inci M.
    Ji, Shuiwang
    Zhou, Jiayu
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1735 - 1744
  • [10] COMPRESSIVE FEATURE SELECTION FOR REMOTE VISUAL MULTI-TASK INFERENCE<bold> </bold>
    Alvar, Saeed Ranjbar
    Bajic, Ivan, V
    2024 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS, ICMEW 2024, 2024,