NONPARAMETRIC BAYESIAN FEATURE SELECTION FOR MULTI-TASK LEARNING

被引:0
|
作者
Li, Hui [1 ]
Liao, Xuejun [2 ]
Carin, Lawrence [1 ,2 ]
机构
[1] Signal Innovat Grp Inc, Durham, NC 27703 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present a nonparametric Bayesian model for multi-task learning, with a focus on feature selection in binary classification. The model jointly identifies groups of similar tasks and selects the subset of features relevant to the tasks within each group. The model employs a Dirchlet process with a beta-Bernoulli hierarchical base measure. The posterior inference is accomplished efficiently using a Gibbs sampler. Experimental results are presented on simulated as well as real data.
引用
收藏
页码:2236 / 2239
页数:4
相关论文
共 50 条
  • [1] Expectation Propagation for Bayesian Multi-task Feature Selection
    Hernandez-Lobato, Daniel
    Miguel Hernandez-Lobato, Jose
    Helleputte, Thibault
    Dupont, Pierre
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I: EUROPEAN CONFERENCE, ECML PKDD 2010, 2010, 6321 : 522 - 537
  • [2] Probabilistic Joint Feature Selection for Multi-task Learning
    Xiong, Tao
    Bi, Jinbo
    Rao, Bharat
    Cherkassky, Vladimir
    [J]. PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 332 - +
  • [3] Structured feature selection and task relationship inference for multi-task learning
    Hongliang Fei
    Jun Huan
    [J]. Knowledge and Information Systems, 2013, 35 : 345 - 364
  • [4] Structured feature selection and task relationship inference for multi-task learning
    Fei, Hongliang
    Huan, Jun
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2013, 35 (02) : 345 - 364
  • [5] Feature Selection and Multi-task Learning for Pedestrian Crossing Prediction
    Schoerkhuber, Dominik
    Proell, Maximilian
    Gelautz, Margrit
    [J]. 2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 439 - 444
  • [6] Label-Sensitive Task Grouping by Bayesian Nonparametric Approach for Multi-Task Multi-Label Learning
    Zhang, Xiao
    Li, Wenzhong
    Nguyen, Vu
    Zhuang, Fuzhen
    Xiong, Hui
    Lu, Sanglu
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3125 - 3131
  • [7] Convex multi-task feature learning
    Andreas Argyriou
    Theodoros Evgeniou
    Massimiliano Pontil
    [J]. Machine Learning, 2008, 73 : 243 - 272
  • [8] Multi-Task Feature Interaction Learning
    Lin, Kaixiang
    Xu, Jianpeng
    Baytas, Inci M.
    Ji, Shuiwang
    Zhou, Jiayu
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1735 - 1744
  • [9] Convex multi-task feature learning
    Argyriou, Andreas
    Evgeniou, Theodoros
    Pontil, Massimiliano
    [J]. MACHINE LEARNING, 2008, 73 (03) : 243 - 272
  • [10] Nonparametric Bayesian Multi-Task Large-margin Classification
    Du, Changying
    He, Jia
    Zhuang, Fuzhen
    Qi, Yuan
    He, Qing
    [J]. 21ST EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2014), 2014, 263 : 255 - +