Exact solutions of the nonstationary Schrödinger equation

被引:0
|
作者
E. P. Velicheva
A. A. Suz'ko
机构
[1] Gomel State University,The Institute of Radiation Physics and Chemistry Problems
[2] Belarussian Academy of Sciences,undefined
来源
关键词
Unitary Transformation; Evolution Operator; Geometric Phase; Schr6dinger Equation; SchrSdinger Equation;
D O I
暂无
中图分类号
学科分类号
摘要
On the basis of exactly solvable stationary models for the Schrödinger equation, we develop a procedure for solving the nonstationary Schödinger equation in an explicit analytic form. We investigate the formation of the nonadiabatic geometric phase during cyclic evolution of a quantum system.
引用
收藏
页码:687 / 693
页数:6
相关论文
共 50 条
  • [21] Singularities of the green function of the nonstationary Schrödinger equation
    M. V. Buslaeva
    V. S. Buslaev
    Functional Analysis and Its Applications, 1998, 32 : 132 - 134
  • [22] Asymptotic Behavior of Solutions of the Nonstationary Schrödinger Equation with Potential that Slowly Depends on Time
    Sukhanov V.V.
    Journal of Mathematical Sciences, 2023, 277 (4) : 689 - 697
  • [23] The exact solutions to (2+1)-dimensional nonlinear Schrdinger equation
    ZHANG Jinliang WANG Mingliang FANG Zongde School of Mechanical and Electronic Engineering Northwestern Polytechnic University Xian PRChina Department of Mathematics and Physics Henan University of Science and Technology Luoyang PRChina Department of Mathematics Lanzhou University Lanzhou PRChina
    原子与分子物理学报, 2004, (01) : 78 - 82
  • [24] A new approach to exact optical soliton solutions for the nonlinear Schrödinger equation
    V. F. Morales-Delgado
    J. F. Gómez-Aguilar
    Dumitru Baleanu
    The European Physical Journal Plus, 133
  • [25] Exact solutions and conservation laws of the generalized Schrödinger-Hirota equation
    Kudryashov, Nikolay A.
    Dai, Chao-Qing
    Zhou, Qin
    Kutukov, Aleksandr A.
    PHYSICS LETTERS A, 2025, 539
  • [26] Exact Solutions of the Time-Independent Axially Symmetric Schrödinger Equation
    A. G. Kudryavtsev
    JETP Letters, 2020, 111 : 126 - 128
  • [27] Iterative Solutions of the Schrödinger Equation
    George Rawitscher
    Few-Body Systems, 2014, 55 : 821 - 824
  • [28] Separability of Solutions to a Schr?dinger Equation
    王文华
    曹怀信
    郭志华
    余保民
    Communications in Theoretical Physics, 2014, 62 (08) : 205 - 209
  • [29] Exact Solutions to Fractional Schrödinger-Hirota Equation Using Auxiliary Equation Method
    Tian, Guangyuan
    Meng, Xianji
    AXIOMS, 2024, 13 (10)
  • [30] Inverse schrödinger equation and the exact wave function
    Nakatsuji, Hiroshi
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 65 (5 A): : 521221 - 521221