Lévy–LePage Series Representation of Stable Vectors: Convergence in Variation

被引:0
|
作者
V. Bentkus
A. Juozulynas
V. Paulauskas
机构
[1] Institute of Mathematics and Informatics,Department of Mathematics
[2] University of Vilnius,undefined
来源
关键词
stable laws; Poissonian representation; Lévy–LePage series; convergence in variation; convergence rates;
D O I
暂无
中图分类号
学科分类号
摘要
Multidimensional stable laws Gα admit a well-known Lévy–LePage series representation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G_\alpha = \mathcal{L}\sum\limits_{j = 1}^\infty {\Gamma _j^{ - 1/\alpha } X_j } ,{\text{ 0 < }}\alpha {\text{ < 2}}$$ \end{document}where Γ1, Γ2,... are the successive times of jumps of a standard Poisson process, and X1, X2,... denote i.i.d. random vectors, independent of Γ1, Γ2,.... We present (asymptotically) optimal bounds for the total variation distance between a stable law and the distribution of a partial sum of the Lévy–LePage series. In the one-dimensional case similar results were obtained earlier by Bentkus, Götze, and Paulauskas.
引用
收藏
页码:949 / 978
页数:29
相关论文
共 50 条
  • [1] Levy-LePage series representation of stable vectors: Convergence in variation
    Bentkus, V
    Juozulynas, A
    Paulauskas, V
    JOURNAL OF THEORETICAL PROBABILITY, 2001, 14 (04) : 949 - 978
  • [2] On the convergence of LePage series in Skorokhod space
    Davydoy, Youri
    Dombry, Clement
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (01) : 145 - 150
  • [3] Stable CLTs and Rates for Power Variation of α-Stable Lévy Processes
    Jan M. Gairing
    Peter Imkeller
    Methodology and Computing in Applied Probability, 2015, 17 : 73 - 90
  • [4] Estimation of Tempered Stable Lévy Models of Infinite Variation
    José E. Figueroa-López
    Ruoting Gong
    Yuchen Han
    Methodology and Computing in Applied Probability, 2022, 24 : 713 - 747
  • [5] The Lévy-Khinchin representation of a class of stable signed measures
    Smorodina N.V.
    Faddeev M.M.
    Journal of Mathematical Sciences, 2009, 159 (3) : 363 - 375
  • [6] On some properties of Lévy vectors and their variations
    Paweł Klinga
    Andrzej Nowik
    Lithuanian Mathematical Journal, 2023, 63 : 181 - 189
  • [7] On a skew stable L?vy process
    Iksanov, Alexander
    Pilipenko, Andre
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 156 : 44 - 68
  • [8] The Lévy-Khinchin Representation of the One Class of Signed Stable Measures and Some Its Applications
    N. V. Smorodina
    M. M. Faddeev
    Acta Applicandae Mathematicae, 2010, 110 : 1289 - 1308
  • [9] The L,vy-Khinchin Representation of the One Class of Signed Stable Measures and Some Its Applications
    Smorodina, N. V.
    Faddeev, M. M.
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1289 - 1308
  • [10] Finite Variation of Fractional L,vy Processes
    Bender, Christian
    Lindner, Alexander
    Schicks, Markus
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (02) : 594 - 612