Levy-LePage series representation of stable vectors: Convergence in variation

被引:7
|
作者
Bentkus, V
Juozulynas, A
Paulauskas, V
机构
[1] Inst Math & Informat, LT-2000 Vilnius, Lithuania
[2] Vilnius State Univ, Dept Math, LT-2006 Vilnius, Lithuania
关键词
stable laws; Poissonian representation; Levy LePage series; convergence in variation; convergence rates;
D O I
10.1023/A:1017520702943
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multidimensional stable laws G(alpha) admit a well-known Levy-LePage series representation G(alpha)=L(Sigma (alpha)(j=1)Gamma X--1/alpha(j)j), 0 < alpha <2 where Gamma (1), Gamma (2), .... are the successive times of jumps of a standard Poisson process, and X-1, X-2,.... denote i.i.d. random vectors, independent of Gamma (1), Gamma (2),.... We present (asymptotically) optimal bounds for the total variation distance between a stable law and the distribution of a partial sum of the Levy-LePage series. In the one-dimensional case similar results were obtained earlier by Bentkus, Gotze, and Paulauskas.
引用
收藏
页码:949 / 978
页数:30
相关论文
共 50 条