Refinement monoids and adaptable separated graphs

被引:0
|
作者
Pere Ara
Joan Bosa
Enrique Pardo
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[2] Barcelona Graduate School of Mathematics (BGSMath),Departamento de Matemáticas, Facultad de Ciencias
[3] Universidad de Cádiz,undefined
[4] Campus de Puerto Real,undefined
来源
Semigroup Forum | 2020年 / 101卷
关键词
Refinement monoid; Separated graph; -system; Primely generated;
D O I
暂无
中图分类号
学科分类号
摘要
We define a subclass of separated graphs, the class of adaptable separated graphs, and study their associated monoids. We show that these monoids are primely generated conical refinement monoids, and we explicitly determine their associated I-systems. We also show that any finitely generated conical refinement monoid can be represented as the monoid of an adaptable separated graph. These results provide the first step toward an affirmative answer to the Realization Problem for von Neumann regular rings, in the finitely generated case.
引用
收藏
页码:19 / 36
页数:17
相关论文
共 50 条
  • [21] Endomorphism monoids of chained graphs
    Koubek, V
    Sichler, J
    DISCRETE MATHEMATICS, 2002, 242 (1-3) : 157 - 174
  • [22] GROUPS AND MONOIDS OF REGULAR GRAPHS (AND OF GRAPHS WITH BOUNDED DEGREES)
    HELL, P
    NESETRIL, J
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (02): : 239 - 251
  • [23] GROUPS AND MONOIDS OF REGULAR GRAPHS (AND OF GRAPHS WITH BOUNDED DEGREES)
    HELL, P
    NESETRIL, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (04): : A501 - &
  • [24] The realization problem for finitely generated refinement monoids
    Pere Ara
    Joan Bosa
    Enrique Pardo
    Selecta Mathematica, 2020, 26
  • [25] The realization problem for finitely generated refinement monoids
    Ara, Pere
    Bosa, Joan
    Pardo, Enrique
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (03):
  • [26] On the adaptable chromatic number of graphs
    Hell, Pavol
    Zhu, Xuding
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 912 - 921
  • [27] Endomorphism monoids of generalized split graphs
    Lu, Dancheng
    Wu, Tongsuo
    ARS COMBINATORIA, 2013, 111 : 357 - 373
  • [28] GRAPHS AND FREE PARTIALLY COMMUTATIVE MONOIDS
    KONIG, R
    THEORETICAL COMPUTER SCIENCE, 1991, 78 (02) : 319 - 346
  • [29] Unicyclic graphs with regular endomorphism monoids
    Ma, Xiaobin
    Wong, Dein
    Zhou, Jinming
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2016, 8 (02)
  • [30] REPRESENTING SUBDIRECT PRODUCT MONOIDS BY GRAPHS
    Koubek, Vaclav
    Roedl, Vojtech
    Shemmer, Benjamin
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2009, 19 (05) : 705 - 721