The human placenta is a tumor-like tissue in which highly proliferative, migratory, and invasive extra-villous trophoblast cells, migrate and invade the uterus and its vasculature, to provide a vital link between the mother and the developing fetus. In the present article, we review our studies on a series of experiments, designed to identify molecular events responsible for the phenotypic changes during placental growth. Our observations illustrate that the human placenta is endowed with the biochemical machinery to proliferate indefinitely throughout gestation, yet, there are intrinsic mechanisms that effectively circumscribe the extent and duration of trophoblast proliferation. The placenta combines in itself the unique ability to produce a wide variety of protein, peptide and steroid hormones, but intricately interwoven in this process, is also the remarkable capacity to simultaneously regulate their synthesis and secretion. The placenta therefore represents an autonomous or a self-sufficient unit capable of modulating its own growth and function, while assisting the developing fetus until it is capable of independent existence.