An enhanced fuzzy c-means algorithm for audio segmentation and classification

被引:0
|
作者
Mohammad A. Haque
Jong-Myon Kim
机构
[1] University of Ulsan,School of Electrical Engineering
来源
关键词
Audio segmentation and classification; Fuzzy c-means algorithm; Multimedia; Database retrieval;
D O I
暂无
中图分类号
学科分类号
摘要
Automated audio segmentation and classification play important roles in multimedia content analysis. In this paper, we propose an enhanced approach, called the correlation intensive fuzzy c-means (CIFCM) algorithm, to audio segmentation and classification that is based on audio content analysis. While conventional methods work by considering the attributes of only the current frame or segment, the proposed CIFCM algorithm efficiently incorporates the influence of neighboring frames or segments in the audio stream. With this method, audio-cuts can be detected efficiently even when the signal contains audio effects such as fade-in, fade-out, and cross-fade. A number of audio features are analyzed in this paper to explore the differences between various types of audio data. The proposed CIFCM algorithm works by detecting the boundaries between different kinds of sounds and classifying them into clusters such as silence, speech, music, speech with music, and speech with noise. Our experimental results indicate that the proposed method outperforms the state-of-the-art FCM approach in terms of audio segmentation and classification.
引用
收藏
页码:485 / 500
页数:15
相关论文
共 50 条
  • [21] A novel fuzzy c-means clustering algorithm for image segmentation
    Yang, Yong
    Huang, Shuying
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2897 - 2901
  • [22] Application of Fuzzy C-means clustering algorithm in image segmentation
    Guo, Rongchuan
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONICS ENGINEERING AND COMPUTER SCIENCE (ICEEECS 2016), 2016, 50 : 84 - 88
  • [23] An Image Segmentation Algorithm Based On Fuzzy C-Means Clustering
    Zhang Xinbo
    Jiang Li
    PROCEEDINGS OF 2009 CONFERENCE ON COMMUNICATION FACULTY, 2009, : 123 - 126
  • [24] Segmentation of radiographic images using fuzzy c-means algorithm
    Wang, X
    Wong, BS
    INSIGHT, 2005, 47 (10) : 631 - 633
  • [25] Image segmentation by generalized hierarchical fuzzy C-means algorithm
    Zheng, Yuhui
    Jeon, Byeungwoo
    Xu, Danhua
    Wu, Q. M. Jonathan
    Zhang, Hui
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (02) : 961 - 973
  • [26] IMAGE SEGMENTATION BY A ROBUST GENERALIZED FUZZY C-MEANS ALGORITHM
    Zhang, Hui
    Wu, Q. M. Jonathan
    Thanh Minh Nguyen
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 4024 - 4028
  • [27] A fast fuzzy c-means algorithm for colour image segmentation
    Liu, Qigang
    Zhou, Li
    Sun, Xiangyang
    International Journal of Information and Communication Technology, 2013, 5 (3-4) : 263 - 271
  • [28] An Image Segmentation Algorithm Based on Fuzzy C-Means Clustering
    Zhang, Xin-bo
    Jiang, Li
    ICDIP 2009: INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, PROCEEDINGS, 2009, : 22 - 26
  • [29] Optimal Fuzzy C-Means Algorithm for Brain Image Segmentation
    Hooda, Heena
    Verma, Om Prakash
    Arora, Sonam
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 591 - 602
  • [30] A fast fuzzy c-means algorithm for color image segmentation
    Le Capitaine, Hoel
    Frelicot, Carl
    PROCEEDINGS OF THE 7TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-2011) AND LFA-2011, 2011, : 1074 - 1081