Bounding the gamma function in terms of the trigonometric and exponential functions

被引:4
|
作者
Qi F. [1 ,2 ,3 ]
Mahmoud M. [4 ]
机构
[1] Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province
[2] College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region
[3] Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City
[4] Department of Mathematics, Faculty of Science, Mansoura University, Mansoura
来源
Acta Scientiarum Mathematicarum | 2017年 / 83卷 / 1-2期
关键词
Bound; Digamma function; Exponential function; Fractional function; Gamma function; Harmonic number; Inequality; Monotonicity; Trigonometric function;
D O I
10.14232/actasm-016-813-x
中图分类号
学科分类号
摘要
In the paper, the authors bound the gamma function, the digamma function, and the harmonic numbers in terms of the exponent of fractional functions and several trigonometric functions such as the tangent, hyperbolic tangent, secant, and cosecant functions. © Bolyai Institute, University of Szeged.
引用
收藏
页码:125 / 141
页数:16
相关论文
共 50 条
  • [1] Definite integral of logarithmic trigonometric functions expressed in terms of the incomplete gamma function
    Reynolds, Robert
    Stauffer, Allan
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1249 - 1265
  • [2] NEWTONIAN ANALOGUES OF TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS
    FORT, T
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (07): : 807 - &
  • [3] ON INTEGRATION AND SUMMATION OF TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS
    MIESSNER, BF
    [J]. PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1961, 49 (06): : 1088 - &
  • [4] On hardware for computing exponential and trigonometric functions
    Kantabutra, V
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1996, 45 (03) : 328 - 339
  • [5] On exponential and trigonometric functions on nonuniform lattices
    M. Kenfack Nangho
    M. Foupouagnigni
    W. Koepf
    [J]. The Ramanujan Journal, 2019, 49 : 1 - 37
  • [6] Exponential and Trigonometric Functions—From the Book
    Martin Davis
    [J]. The Mathematical Intelligencer, 2003, 25 : 5 - 7
  • [7] Exponential and trigonometric functions - From the book
    Davis, M
    [J]. MATHEMATICAL INTELLIGENCER, 2003, 25 (01): : 5 - 7
  • [8] On exponential and trigonometric functions on nonuniform lattices
    Nangho, M. Kenfack
    Foupouagnigni, M.
    Koepf, W.
    [J]. RAMANUJAN JOURNAL, 2019, 49 (01): : 1 - 37
  • [9] Definite integral of exponential polynomial and hyperbolic function in terms of the incomplete gamma function
    Reynolds, Robert
    Stauffer, Allan
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1295 - 1305
  • [10] Asymptotic expansions for the gamma function in terms of hyperbolic functions
    Yang, Zhenhang
    Tian, Jing-Feng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 478 (01) : 133 - 155