On exponential and trigonometric functions on nonuniform lattices

被引:0
|
作者
M. Kenfack Nangho
M. Foupouagnigni
W. Koepf
机构
[1] University of Pretoria,Department of Mathematics and Applied Mathematics
[2] University of Dschang,Department of Mathematics and Computer Science, Faculty of Science
[3] University of Yaounde I,Department of Mathematics, Higher Teachers’ Training College
[4] African Institute for Mathematical Sciences,Institute of Mathematics
[5] University of Kassel,undefined
来源
The Ramanujan Journal | 2019年 / 49卷
关键词
Basic exponential function; Askey–Wilson polynomials; Symmetric functions and nonuniform lattices; 33D15; 39D45;
D O I
暂无
中图分类号
学科分类号
摘要
We develop analogs of exponential and trigonometric functions (including the basic exponential function) and derive their fundamental properties: addition formula, positivity, reciprocal and fundamental relations of trigonometry. We also establish a binomial theorem, characterize symmetric orthogonal polynomials and provide a formula for computing the nth-derivatives for analytic functions on nonuniform lattices (q-quadratic and quadratic variables).
引用
收藏
页码:1 / 37
页数:36
相关论文
共 50 条
  • [1] On exponential and trigonometric functions on nonuniform lattices
    Nangho, M. Kenfack
    Foupouagnigni, M.
    Koepf, W.
    [J]. RAMANUJAN JOURNAL, 2019, 49 (01): : 1 - 37
  • [2] NEWTONIAN ANALOGUES OF TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS
    FORT, T
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (07): : 807 - &
  • [3] ON INTEGRATION AND SUMMATION OF TRIGONOMETRIC AND EXPONENTIAL FUNCTIONS
    MIESSNER, BF
    [J]. PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1961, 49 (06): : 1088 - &
  • [4] On hardware for computing exponential and trigonometric functions
    Kantabutra, V
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1996, 45 (03) : 328 - 339
  • [5] Exponential and Trigonometric Functions—From the Book
    Martin Davis
    [J]. The Mathematical Intelligencer, 2003, 25 : 5 - 7
  • [6] Exponential and trigonometric functions - From the book
    Davis, M
    [J]. MATHEMATICAL INTELLIGENCER, 2003, 25 (01): : 5 - 7
  • [7] Nonuniform exponential dichotomies and Lyapunov functions
    Luis Barreira
    Davor Dragičević
    Claudia Valls
    [J]. Regular and Chaotic Dynamics, 2017, 22 : 197 - 209
  • [8] Nonuniform Exponential Dichotomies and Lyapunov Functions
    Barreira, Luis
    Dragicevic, Davor
    Valls, Claudia
    [J]. REGULAR & CHAOTIC DYNAMICS, 2017, 22 (03): : 197 - 209
  • [9] Sharp Exponential Approximate Inequalities for Trigonometric Functions
    Nishizawa, Yusuke
    [J]. RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 609 - 621
  • [10] Approximating trigonometric functions by using exponential inequalities
    Chen, Xiao-Diao
    Ma, Junyi
    Li, Yixin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)