Generic properties of eigenvalues of the fractional Laplacian

被引:0
|
作者
Mouhamed Moustapha Fall
Marco Ghimenti
Anna Maria Micheletti
Angela Pistoia
机构
[1] African Institute for Mathematical Sciences Senegal,Dipartimento di Matematica
[2] Università di Pisa,Dipartimento SBAI
[3] Università di Roma “La Sapienza”,undefined
关键词
35J60; 58C15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Dirichlet eigenvalues of the fractional Laplacian (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^s$$\end{document}, with s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document}, related to a smooth bounded domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega }$$\end{document}. We prove that there exists an arbitrarily small perturbation Ω~=(I+ψ)(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\Omega }=(I+\psi )({\Omega })$$\end{document} of the original domain such that all Dirichlet eigenvalues of the fractional Laplacian associated to Ω~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\Omega }$$\end{document} are simple. As a consequence we obtain that all Dirichlet eigenvalues of the fractional Laplacian on an interval are simple. In addition, we prove that for a generic choice of parameters all the eigenvalues of some non-local operators are also simple.
引用
收藏
相关论文
共 50 条