Geometry of Central Extensions of Nilpotent Lie Algebras

被引:0
|
作者
D. V. Millionshchikov
R. Jimenez
机构
[1] Moscow State University,Faculty of Mechanics and Mathematics
[2] National Autonomous University of Mexico,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We obtain a recurrent and monotone method for constructing and classifying nilpotent Lie algebras by means of successive central extensions. The method consists in calculating the second cohomology H2(g,K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{2}(\mathfrak{g}, \mathbb{K})$$\end{document} of an extendable nilpotent Lie algebra g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{g}$$\end{document} followed by studying the geometry of the orbit space of the action of the automorphism group Aut(g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{g}$$\end{document}) on Grassmannians of the form Gr(m,H2(g,K))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\operatorname{Gr}\left(m, H^{2}(\mathfrak{g}, \mathbb{K})\right)$$\end{document}. In this case, it is necessary to take into account the filtered cohomology structure with respect to the ideals of the lower central series: a cocycle defining a central extension must have maximum filtration. Such a geometric method allows us to classify nilpotent Lie algebras of small dimensions, as well as to classify narrow naturally graded Lie algebras. We introduce the concept of a rigid central extension and construct examples of rigid and nonrigid central extensions.
引用
收藏
页码:209 / 231
页数:22
相关论文
共 50 条
  • [21] On central extensions and simply laced Lie algebras
    Romano, Beth
    JOURNAL OF ALGEBRA, 2021, 568 : 480 - 511
  • [22] Graded contractions of Lie algebras and central extensions
    de Guise, H
    de Montigny, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (22): : 4039 - 4057
  • [23] On nilpotent extensions of algebras
    Marczak, Adam W.
    Plonka, Jerzy
    ALGEBRA COLLOQUIUM, 2007, 14 (04) : 593 - 604
  • [24] Finite-Dimensional Nilpotent Lie Algebras with Central Derivation Lie Algebras of Minimal Possible
    Kianmehr, Mehri
    Saeedi, Farshid
    VIETNAM JOURNAL OF MATHEMATICS, 2025, 53 (01) : 239 - 244
  • [25] COHOMOLOGY OF NILPOTENT LIE ALGEBRAS - APPLICATION TO STUDY OF VARIETY OF NILPOTENT LIE ALGEBRAS
    VERGNE, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1970, 98 (02): : 81 - &
  • [26] A cohomological characterization of Leibniz central extensions of Lie algebras
    Hu, Naihong
    Pei, Yufeng
    Liu, Dong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (02) : 437 - 447
  • [27] On universal central extensions of Hom-Lie algebras
    Casas, J. M.
    Insua, M. A.
    Pacheco, N.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (02): : 277 - 288
  • [28] CENTRAL EXTENSIONS OF SPHERE GROUPS AND THEIR LIE-ALGEBRAS
    NASH, C
    OCONNOR, D
    SEN, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) : 3269 - 3272
  • [29] EUCLIDEAN LIE-ALGEBRAS ARE UNIVERSAL CENTRAL EXTENSIONS
    WILSON, RL
    LECTURE NOTES IN MATHEMATICS, 1982, 933 : 210 - 213
  • [30] Invariant metrics on central extensions of quadratic Lie algebras
    Garcia-Delgado, R.
    Salgado, G.
    Sanchez-Valenzuela, O. A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (12)