Extreme-strike asymptotics for general Gaussian stochastic volatility models

被引:0
|
作者
Archil Gulisashvili
Frederi Viens
Xin Zhang
机构
[1] Ohio University,Department of Mathematics
[2] Michigan State University,Department of Statistics and Probability
[3] Purdue University,Department of Mathematics
来源
Annals of Finance | 2019年 / 15卷
关键词
Stochastic volatility; Implied volatility; Large strike; Karhunen–Loève expansion; Chi-squared variates; 60G15; 91G20; 40E05; C6; G13;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a stochastic volatility asset price model in which the volatility is the absolute value of a continuous Gaussian process with arbitrary prescribed mean and covariance. By exhibiting a Karhunen–Loève expansion for the integrated variance, and using sharp estimates of the density of a general second-chaos variable, we derive asymptotics for the asset price density for large or small values of the variable, and study the wing behavior of the implied volatility in these models. Our main result provides explicit expressions for the first three terms in the expansion of the implied volatility, based on three basic spectral-type statistics of the Gaussian process: the top eigenvalue of its covariance operator, the multiplicity of this eigenvalue, and the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} norm of the projection of the mean function on the top eigenspace. Numerical illustrations using the Stein–Stein and fractional Stein–Stein models are presented, including strategies for parameter calibration.
引用
收藏
页码:59 / 101
页数:42
相关论文
共 50 条
  • [1] Extreme-strike asymptotics for general Gaussian stochastic volatility models
    Gulisashvili, Archil
    Viens, Frederi
    Zhang, Xin
    [J]. ANNALS OF FINANCE, 2019, 15 (01) : 59 - 101
  • [2] Asymptotics for Rough Stochastic Volatility Models
    Forde, Martin
    Zhang, Hongzhong
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2017, 8 (01): : 114 - 145
  • [3] Small-Time Asymptotics for Gaussian Self-Similar Stochastic Volatility Models
    Archil Gulisashvili
    Frederi Viens
    Xin Zhang
    [J]. Applied Mathematics & Optimization, 2020, 82 : 183 - 223
  • [4] Small-Time Asymptotics for Gaussian Self-Similar Stochastic Volatility Models
    Gulisashvili, Archil
    Viens, Frederi
    Zhang, Xin
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 82 (01): : 183 - 223
  • [5] PRECISE ASYMPTOTICS: ROBUST STOCHASTIC VOLATILITY MODELS
    Friz, P. K.
    Gassiat, P.
    Pigato, P.
    [J]. ANNALS OF APPLIED PROBABILITY, 2021, 31 (02): : 896 - 940
  • [6] Asymptotics for multifactor Volterra type stochastic volatility models
    Catalini, Giulia
    Pacchiarotti, Barbara
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2023, 41 (06) : 1025 - 1055
  • [7] Pathwise Asymptotics for Volterra Type Stochastic Volatility Models
    Miriana Cellupica
    Barbara Pacchiarotti
    [J]. Journal of Theoretical Probability, 2021, 34 : 682 - 727
  • [8] Pathwise Asymptotics for Volterra Type Stochastic Volatility Models
    Cellupica, Miriana
    Pacchiarotti, Barbara
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (02) : 682 - 727
  • [9] Extreme-Strike Comparisons and Structural Bounds for SPX and VIX Options
    Papanicolaou, A.
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2018, 9 (02): : 401 - 434
  • [10] ON THE ASYMPTOTICS OF FAST MEAN-REVERSION STOCHASTIC VOLATILITY MODELS
    Souza, Max O.
    Zubelli, Jorge P.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2007, 10 (05) : 817 - 835