Machine learning improves accounting: discussion, implementation and research opportunities

被引:0
|
作者
Jeremy Bertomeu
机构
[1] Washington University,Olin School of Business
来源
Review of Accounting Studies | 2020年 / 25卷
关键词
Machine learning; Accounting; Estimates; Modelling; C4; C5; G3; M2; M4;
D O I
暂无
中图分类号
学科分类号
摘要
Machine learning has been growing in importance in empirical accounting research. In this opinion piece, I review the unique challenges of going beyond prediction and leveraging these tools into generalizable conceptual insights. Taking as springboard “Machine learning improves accounting estimates” presented at the 2019 Conference of the Review of Accounting Studies, I propose a conceptual framework with various testable implications. I also develop implementation considerations panels with accounting data, such as colinearities between accounting numbers or suitable choices of validation and test samples to mitigate between-sample correlations. Lastly, I offer a personal viewpoint toward embracing the many low-hanging opportunities to bring the methodology into major unanswered accounting questions.
引用
收藏
页码:1135 / 1155
页数:20
相关论文
共 50 条
  • [21] Foreign listing and accounting - Opportunities and problems of empirical accounting research
    Leuz, C
    BETRIEBSWIRTSCHAFTLICHE FORSCHUNG UND PRAXIS, 2003, 55 (06): : 623 - 636
  • [22] Empirical tax research in accounting: A discussion
    Maydew, EL
    JOURNAL OF ACCOUNTING & ECONOMICS, 2001, 31 (1-3): : 389 - 403
  • [23] Discussion of empirical research on accounting choice
    Francis, J
    JOURNAL OF ACCOUNTING & ECONOMICS, 2001, 31 (1-3): : 309 - 319
  • [24] E-Learning: Challenges and Research Opportunities Using Machine Learning & Data Analytics
    Moubayed, Abdallah
    Injadat, Mohammadnoor
    Nassif, Ali Bou
    Lutfiyya, Hanan
    Shami, Abdallah
    IEEE ACCESS, 2018, 6 : 39117 - 39138
  • [25] On the Challenges and Opportunities in Visualization for Machine Learning and Knowledge Extraction: A Research Agenda
    Turkay, Cagatay
    Laramee, Robert
    Holzinger, Andreas
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2017, 2017, 10410 : 191 - 198
  • [26] Self-adaptive Machine Learning Systems: Research Challenges and Opportunities
    Casimiro, Maria
    Romano, Paolo
    Garlan, David
    Moreno, Gabriel A.
    Kang, Eunsuk
    Klein, Mark
    SOFTWARE ARCHITECTURE, ECSA 2021 TRACKS AND WORKSHOPS, 2022, 13365 : 133 - 155
  • [27] Big data and machine learning in critical care: Opportunities for collaborative research
    Nunez Reiz, Antonio
    Sanchez Garcia, Miguel
    Martinez Sagasti, Fernando
    Alvarez Gonzalez, Manuel
    Blesa Malpica, Antonio
    Martin Benitez, Juan Carlos
    Nieto Cabrera, Mercedes
    del Pino Ramirez, Angela
    Gil Perdomo, Jose Miguel
    Prada Alonso, Jesus
    Ceti, Leo Anthony
    de la Hoz, Miguel Angel Armengol
    Deliberato, Rodrigo
    Paik, Kenneth
    Pollard, Tom
    Raffa, Jesse
    Torres, Felipe
    Mayol, Julio
    Chafer, Joan
    Gonzalez Ferrer, Arturo
    Rey, Angel
    Gonzalez Luengo, Henar
    Fico, Giuseppe
    Lombroni, Ivana
    Hernandez, Liss
    Lopez, Laura
    Merino, Beatriz
    Fernanda Cabrera, Maria
    Teresa Arredondo, Maria
    Bodi, Maria
    Gomez, Josep
    Rodriguez, Alejandro
    MEDICINA INTENSIVA, 2019, 43 (01) : 52 - 57
  • [28] A comprehensive survey on machine learning for networking: evolution, applications and research opportunities
    Boutaba, Raouf
    Salahuddin, Mohammad A.
    Limam, Noura
    Ayoubi, Sara
    Shahriar, Nashid
    Estrada-Solano, Felipe
    Caicedo, Oscar M.
    JOURNAL OF INTERNET SERVICES AND APPLICATIONS, 2018, 9 (09)
  • [29] On the relationship between research parasites and fairness in machine learning: challenges and opportunities
    Nieto, Nicolas
    Larrazabal, Agostina
    Peterson, Victoria
    Milone, Diego H.
    Ferrante, Enzo
    GIGASCIENCE, 2021, 10 (12):
  • [30] Machine Learning in Sport Social Media Research : Practical Uses and Opportunities
    Du, James
    Mamo, Yoseph Z.
    Floyd, Carter
    Karthikeyan, Niveditha
    James, Jeffrey D.
    INTERNATIONAL JOURNAL OF SPORT COMMUNICATION, 2024, 17 (01) : 97 - 106