Interpreting single-step genomic evaluation as a neural network of three layers: pedigree, genotypes, and phenotypes

被引:0
|
作者
Tianjing Zhao
Hao Cheng
机构
[1] University of California Davis,Department of Animal Science
[2] University of California Davis,Integrative Genetics and Genomics Graduate Group
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The single-step approach has become the most widely-used methodology for genomic evaluations when only a subset of phenotyped individuals in the pedigree are genotyped, where the genotypes for non-genotyped individuals are imputed based on gene contents (i.e., genotypes) of genotyped individuals through their pedigree relationships. We proposed a new method named single-step neural network with mixed models (NNMM) to represent single-step genomic evaluations as a neural network of three sequential layers: pedigree, genotypes, and phenotypes. These three sequential layers of information create a unified network instead of two separate steps, allowing the unobserved gene contents of non-genotyped individuals to be sampled based on pedigree, observed genotypes of genotyped individuals, and phenotypes. In addition to imputation of genotypes using all three sources of information, including phenotypes, genotypes, and pedigree, single-step NNMM provides a more flexible framework to allow nonlinear relationships between genotypes and phenotypes, and for individuals to be genotyped with different single-nucleotide polymorphism (SNP) panels. The single-step NNMM has been implemented in the software package “JWAS’.
引用
收藏
相关论文
共 50 条
  • [21] A single-step genomic evaluation for milk production in Egyptian buffalo
    Abdel-Shafy, Hamdy
    Awad, Mohamed A. A.
    El-Regalaty, Hussein
    Ismael, Ahmed
    El-Assal, Salah El-Din
    Abou-Bakr, Samy
    [J]. LIVESTOCK SCIENCE, 2020, 234
  • [22] Application of single-step genomic evaluation for crossbred performance in pig
    Xiang, T.
    Nielsen, B.
    Su, G.
    Legarra, A.
    Christensen, O. F.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2016, 94 (03) : 936 - 948
  • [23] Choice of parameters for single-step genomic evaluation for type.
    Misztal, I.
    Aguilar, I.
    Legarra, A.
    Lawlor, T. J.
    [J]. JOURNAL OF DAIRY SCIENCE, 2010, 93 : 533 - 533
  • [24] Single-Step Methodology for Genomic Evaluation in Turkeys (Meleagris gallopavo)
    Abdalla, Emhimad E. A.
    Schenkel, Flavio S.
    Begli, Hakimeh Emamgholi
    Willems, Owen W.
    van As, Pieter
    Vanderhout, Ryley
    Wood, Benjamin J.
    Baes, Christine F.
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [25] Unknown-parent groups in single-step genomic evaluation
    Misztal, I.
    Vitezica, Z. G.
    Legarra, A.
    Aguilar, I.
    Swan, A. A.
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2013, 130 (04) : 252 - 258
  • [26] Single-step genomic evaluation of crossbreed dairy cattle in the US
    Cesarani, A.
    Lourenco, D.
    Tsuruta, S.
    Legarra, A.
    Nicolazzi, E. L.
    VanRaden, P. M.
    Misztal, I.
    [J]. JOURNAL OF DAIRY SCIENCE, 2022, 105 : 45 - 45
  • [27] Estimation of breeding values for uniformity of growth in Atlantic salmon (Salmo salar) using pedigree relationships or single-step genomic evaluation
    Panya Sae-Lim
    Antti Kause
    Marie Lillehammer
    Han A. Mulder
    [J]. Genetics Selection Evolution, 49
  • [28] Estimation of breeding values for uniformity of growth in Atlantic salmon (Salmo salar) using pedigree relationships or single-step genomic evaluation
    Sae-Lim, Panya
    Kause, Antti
    Lillehammer, Marie
    Mulder, Han A.
    [J]. GENETICS SELECTION EVOLUTION, 2017, 49
  • [29] Modeling pedigree accuracy and uncertain parentage in single-step genomic evaluations of simulated and US Holstein datasets
    Bradford, H. L.
    Masuda, Y.
    Cole, J. B.
    Misztal, I
    VanRaden, P. M.
    [J]. JOURNAL OF DAIRY SCIENCE, 2019, 102 (03) : 2308 - 2318
  • [30] Technical note: Impact of pedigree depth on convergence of single-step genomic BLUP in a purebred swine population
    Pocrnic, I.
    Lourenco, D. A. L.
    Bradford, H. L.
    Chen, C. Y.
    Misztal, I.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2017, 95 (08) : 3391 - 3395