On the restricted k-Steiner tree problem

被引:0
|
作者
Prosenjit Bose
Anthony D’Angelo
Stephane Durocher
机构
[1] Carleton University,School of Computer Science
[2] Carleton University,undefined
[3] University of Manitoba,undefined
来源
关键词
Minimum ; -Steiner tree; Steiner point restrictions; Computational geometry; Combinatorial optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Given a set P of n points in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} and an input line γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document} in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document}, we present an algorithm that runs in optimal Θ(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n\log n)$$\end{document} time and Θ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varTheta (n)$$\end{document} space to solve a restricted version of the 1-Steiner tree problem. Our algorithm returns a minimum-weight tree interconnecting P using at most one Steiner point s∈γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in \gamma $$\end{document}, where edges are weighted by the Euclidean distance between their endpoints. We then extend the result to j input lines. Following this, we show how the algorithm of Brazil et al. in Algorithmica 71(1):66–86 that solves the k-Steiner tree problem in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} in O(n2k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{2k})$$\end{document} time can be adapted to our setting. For k>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k>1$$\end{document}, restricting the (at most) k Steiner points to lie on an input line, the runtime becomes O(nk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{k})$$\end{document}. Next we show how the results of Brazil et al. in Algorithmica 71(1):66–86 allow us to maintain the same time and space bounds while extending to some non-Euclidean norms and different tree cost functions. Lastly, we extend the result to j input curves.
引用
收藏
页码:2893 / 2918
页数:25
相关论文
共 50 条
  • [41] On the approximability of the Steiner tree problem in phylogeny
    Fernandez-Baca, D
    Lagergren, J
    DISCRETE APPLIED MATHEMATICS, 1998, 88 (1-3) : 129 - 145
  • [42] A note on the terminal Steiner tree problem
    Fuchs, B
    INFORMATION PROCESSING LETTERS, 2003, 87 (04) : 219 - 220
  • [43] The Steiner tree problem with hop constraints
    Voss, S
    ANNALS OF OPERATIONS RESEARCH, 1999, 86 (0) : 321 - 345
  • [44] On the history of the Euclidean Steiner tree problem
    Brazil, Marcus
    Graham, Ronald L.
    Thomas, Doreen A.
    Zachariasen, Martin
    ARCHIVE FOR HISTORY OF EXACT SCIENCES, 2014, 68 (03) : 327 - 354
  • [45] IMPROVED APPROXIMATIONS FOR THE STEINER TREE PROBLEM
    BERMAN, P
    RAMAIYER, V
    JOURNAL OF ALGORITHMS, 1994, 17 (03) : 381 - 408
  • [46] A faster algorithm for the Steiner tree problem
    Mölle, D
    Richter, S
    Rossmanith, P
    STACS 2006, PROCEEDINGS, 2006, 3884 : 561 - 570
  • [47] The Steiner tree problem in orientation metrics
    Yan, GY
    Albrecht, A
    Young, GHF
    Wong, CK
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (03) : 529 - 546
  • [48] LOWER BOUND FOR STEINER TREE PROBLEM
    CHUNG, FRK
    HWANG, FK
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (01) : 27 - 36
  • [49] On the partial terminal Steiner tree problem
    Sun-Yuan Hsieh
    Huang-Ming Gao
    The Journal of Supercomputing, 2007, 41 : 41 - 52
  • [50] Probabilistic Models for the Steiner Tree Problem
    Paschos, Vangelis Th.
    Telelis, Orestis A.
    Zissimopoulos, Vassilis
    NETWORKS, 2010, 56 (01) : 39 - 49