A Liouville theorem for the p-Laplacian and related questions

被引:0
|
作者
Alberto Farina
Carlo Mercuri
Michel Willem
机构
[1] Université de Picardie Jules Verne,LAMFA, CNRS UMR 7352, Faculté des Sciences
[2] Swansea University,Department of Mathematics, Computational Foundry
[3] Université catholique de Louvain,Département de Mathématiques
关键词
35J92 (35B33 · 35B53 · 35B38);
D O I
暂无
中图分类号
学科分类号
摘要
We prove several classification results for p-Laplacian problems on bounded and unbounded domains, and deal with qualitative properties of sign-changing solutions to p-Laplacian equations on RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^N$$\end{document} involving critical nonlinearities. Moreover, on radial domains we characterise the compactness of possibly sign-changing Palais–Smale sequences.
引用
收藏
相关论文
共 50 条
  • [1] A Liouville theorem for the p-Laplacian and related questions
    Farina, Alberto
    Mercuri, Carlo
    Willem, Michel
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [2] A Liouville-type theorem for the p-Laplacian with potential term
    Pinchover, Yehuda
    Tertikas, Achilles
    Tintarev, Kyril
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (02): : 357 - 368
  • [3] Liouville theorem for p-Laplacian Lichnerowicz equation on compact manifolds
    Zhao, Liang
    Wang, Linfeng
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 : 8 - 14
  • [4] GRADIENT ESTIMATE AND A LIOUVILLE THEOREM FOR A p-LAPLACIAN EVOLUTION EQUATION WITH A GRADIENT NONLINEARITY
    Attouchi, Amal
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2016, 29 (1-2) : 137 - 150
  • [5] Sturm-Liouville theory for the p-Laplacian
    Binding, P
    Drábek, P
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2003, 40 (04) : 375 - 396
  • [6] A multiplicity theorem for problems with the p-Laplacian
    Papageorgiou, Evgenia H.
    Papageorgiou, Nikolaos S.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (01) : 63 - 77
  • [7] A multiplicity theorem for problems with the p-Laplacian
    Motreanu, D.
    Motreanu, V. V.
    Papageorgiou, N. S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 1016 - 1027
  • [8] On a parabolic equation related to the p-Laplacian
    Huashui Zhan
    [J]. Boundary Value Problems, 2016
  • [9] On a parabolic equation related to the p-Laplacian
    Zhan, Huashui
    [J]. BOUNDARY VALUE PROBLEMS, 2016,
  • [10] Approximation theorem for principle eigenvalue of discrete p-Laplacian
    Yueshuang Li
    [J]. Frontiers of Mathematics in China, 2018, 13 : 1045 - 1061