PanoSyn: immersive video synopsis for spherical surveillance video

被引:0
|
作者
S PRIYADHARSHINI
ANSUMAN MAHAPATRA
机构
[1] National Institute of Technology Puducherry,Department of Computer Science and Engineering
来源
Sādhanā | / 47卷
关键词
Immersive video; video synopsis; spherical video; panoramic surveillance video; 360; video;
D O I
暂无
中图分类号
学科分类号
摘要
Finding an exciting event in a lengthy spherical (360∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}) surveillance video having an unlimited Field of View (FoV) is challenging and time-consuming. Hence, this paper proposes a novel spherical video synopsis framework to condense the 360∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document} surveillance video. It also incorporates an action recognition module, making monitoring important activities easy, followed by less critical ones. The framework provides flexibility for generating synopsis from spherical videos based on the viewer’s preferences. The preferences include customized FoV visualization of the generated spherical synopsis video and FoV-based personalized synopsis video generation. In the first case, the viewer experience is customized by viewing the interested FoV based on the head movement over the generated spherical synopsis video. In the second case, the viewer experience is personalized by generating a synopsis video only for the viewer’s interested FoV dynamically. Overall, the proposed framework creates a condensed immersive video using various optimization techniques by reducing collisions between objects, preserving all events with interaction, chronological ordering, and showing the viewer only the specified number of objects per frame in the synopsis video recognizing important actions. Exhaustive experimental analysis of the used optimization algorithm is performed for the proposed video synopsis framework applicable for unlimited FoV. The analysis includes a video synopsis of varying lengths and predefined lengths.
引用
收藏
相关论文
共 50 条
  • [31] An Improved Interaction Estimation and Optimization Method for Surveillance Video Synopsis
    Namitha, Kalakunnath
    Geetha, Madathilkulangara
    Athi, Narayanan
    IEEE MULTIMEDIA, 2023, 30 (03) : 25 - 36
  • [32] Multi-video synopsis for video representation
    Li, Teng
    Mei, Tao
    Kweon, In-So
    Hua, Xian-Sheng
    SIGNAL PROCESSING, 2009, 89 (12) : 2354 - 2366
  • [33] Video synopsis: A survey
    Baskurt, Kemal Batuhan
    Samet, Refik
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2019, 181 : 26 - 38
  • [34] Event Based Surveillance Video Synopsis Using Trajectory Kinematics Descriptors
    Wang, Wei-Cheng
    Chung, Pau-Choo
    Huang, Chun-Rong
    Huang, Wei-Yun
    PROCEEDINGS OF THE FIFTEENTH IAPR INTERNATIONAL CONFERENCE ON MACHINE VISION APPLICATIONS - MVA2017, 2017, : 250 - 253
  • [35] TSDNN: tube sorting with deep neural networks for surveillance video synopsis
    Wang, Chenwu
    Wu, Junsheng
    Wang, Pei
    Chen, Hao
    Zhu, Zhixiang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (24) : 65059 - 65076
  • [36] A NEW FRAMEWORK FOR STUDYING TUBES REARRANGEMENT STRATEGIES IN SURVEILLANCE VIDEO SYNOPSIS
    Pappalardo, Giovanna
    Allegra, Dario
    Stanco, Filippo
    Battiato, Sebastiano
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 664 - 668
  • [37] HSAJAYA: An Improved Optimization Scheme for Consumer Surveillance Video Synopsis Generation
    Ghatak, Subhankar
    Rup, Suvendu
    Majhi, Banshidhar
    Swamy, M. N. S.
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2020, 66 (02) : 144 - 152
  • [38] Immersive Video Postprocessing for Efficient Video Coding
    Dziembowski, Adrian
    Mieloch, Dawid
    Jeong, Jun Young
    Lee, Gwangsoon
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 4349 - 4361
  • [39] Eye-gaze based real-time surveillance video synopsis
    Vural, U.
    Akgul, Y. S.
    PATTERN RECOGNITION LETTERS, 2009, 30 (12) : 1151 - 1159
  • [40] COHERENT EVENT-BASED SURVEILLANCE VIDEO SYNOPSIS USING TRAJECTORY CLUSTERING
    Chou, Chien-Li
    Lin, Chin-Hsien
    Chiang, Tzu-Hsuan
    Chen, Hua-Tsung
    Lee, Suh-Yin
    2015 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2015,