A Priori Error Estimates for State-Constrained Semilinear Parabolic Optimal Control Problems

被引:0
|
作者
Francesco Ludovici
Ira Neitzel
Winnifried Wollner
机构
[1] Technische Universität Darmstadt,Fachbereich Mathematik
[2] Rheinische Friedrich-Wilhelms-Universität Bonn,Institut für Numerische Simulation
关键词
Optimal control; Semilinear parabolic PDE; State constraints; Pointwise in time constraints; Space-time a priori error estimates; 49M25; 65M12; 65M15; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the finite element discretization of semilinear parabolic optimization problems subject to pointwise in time constraints on mean values of the state variable. In order to control the feasibility violation induced by the discretization, error estimates for the semilinear partial differential equation are derived. Based upon these estimates, it can be shown that any local minimizer of the semilinear parabolic optimization problems satisfying a weak second-order sufficient condition can be approximated by the discretized problem. Rates for this convergence in terms of temporal and spatial discretization mesh sizes are provided. In contrast to other results in numerical analysis of optimization problems subject to semilinear parabolic equations, the analysis can work with a weak second-order condition, requiring growth of the Lagrangian in critical directions only. The analysis can then be conducted relying solely on the resulting quadratic growth condition of the continuous problem, without the need for similar assumptions on the discrete or time semidiscrete setting.
引用
收藏
页码:317 / 348
页数:31
相关论文
共 50 条
  • [31] Reliable a posteriori error estimation for state-constrained optimal control
    Roesch, A.
    Siebert, K. G.
    Steinig, S.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2017, 68 (01) : 121 - 162
  • [32] A priori error estimates of mixed finite element methods for general semilinear elliptic optimal control problems
    Lu Z.
    Chen Y.
    Computational Mathematics and Modeling, 2013, 24 (1) : 114 - 135
  • [33] Reliable a posteriori error estimation for state-constrained optimal control
    A. Rösch
    K. G. Siebert
    S. Steinig
    Computational Optimization and Applications, 2017, 68 : 121 - 162
  • [34] Optimal control of state-constrained parabolic systems with nonregular boundary controllers
    Mordukhovich, BS
    Zhang, KX
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 527 - 528
  • [35] ERROR ESTIMATES FOR SEMILINEAR PARABOLIC CONTROL PROBLEMS IN THE ABSENCE OF TIKHONOV TERM
    Casas, Eduardo
    Mateos, Mariano
    Roesch, Arnd
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (04) : 2515 - 2540
  • [36] Error estimates for parabolic optimal control problems with control constraints
    Rösch, A
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2004, 23 (02): : 353 - 376
  • [37] State-constrained relaxed problems for semilinear elliptic equations
    Arada, N
    Raymond, JP
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (01) : 248 - 271
  • [38] A priori error estimates of Crank-Nicolson finite element method for parabolic optimal control problems
    Zhang, Xindan
    Zhao, Jianping
    Hou, Yanren
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 144 : 274 - 289
  • [39] A priori error estimates of VSBDF2 schemes for solving parabolic distributed optimal control problems
    Yang, Caijie
    Fu, Hongfei
    Sun, Tongjun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 135
  • [40] State-Constrained Optimal Control Problems of Impulsive Differential Equations
    Nicolas Forcadel
    Zhiping Rao
    Hasnaa Zidani
    Applied Mathematics & Optimization, 2013, 68 : 1 - 19