A new simple method for approximating certain algebraic numbers is developed. By applying this method, an effective upper bound is derived for the integral solutions of the quartic Thue equation with two parameters \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$tx^4 - 4sx^3 y - 6tx^2 y^2 + 4sxy^3 + ty^4 = N$\end{document}, where s > 32t3. As an application, Ljunggren’s equation is solved in an elementary way.
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Bajpai, Prajeet
Bugeaud, Yann
论文数: 0引用数: 0
h-index: 0
机构:
Univ ?e Strasbourg, IRMA, UMR 7501, Strasbourg, France
CNRS, 7 rue Rene Descartes, F-67084 Strasbourg, France
Inst Univ France, Paris, FranceUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada