A Mean Value Theorem for Tangentially Convex Functions

被引:0
|
作者
Juan Enrique Martínez-Legaz
机构
[1] Universitat Autònoma de Barcelona,Departament d’Economia i d’Història Econòmica
[2] Barcelona Graduate School of Mathematics (BGSMath),undefined
来源
关键词
Mean value theorem; Tangential convexity; Tangential subdifferential; Convexity; Monotonicity; Quasiconvexity; Quasimonotonicity; 26B25; 49J52; 47H05;
D O I
暂无
中图分类号
学科分类号
摘要
The main result is an equality type mean value theorem for tangentially convex functions in terms of tangential subdifferentials, which generalizes the classical one for differentiable functions, as well as Wegge theorem for convex functions. The new mean value theorem is then applied, analogously to what is done in the classical case, to characterize, in the tangentially convex context, Lipschitz functions, increasingness with respect to the ordering induced by a closed convex cone, convexity, and quasiconvexity.
引用
下载
收藏
相关论文
共 50 条
  • [31] LOCAL MEAN-VALUE THEOREM FOR ANALYTIC-FUNCTIONS
    SAMUELSSON, A
    AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (01): : 45 - 46
  • [32] A mean value theorem
    Tokieda, TF
    AMERICAN MATHEMATICAL MONTHLY, 1999, 106 (07): : 673 - 674
  • [33] A MEAN VALUE THEOREM
    EASTON, RJ
    WAYMENT, SG
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (02): : 170 - &
  • [34] The DTC (difference of tangentially convex functions) programming: optimality conditions
    F. Mashkoorzadeh
    N. Movahedian
    S. Nobakhtian
    TOP, 2022, 30 : 270 - 295
  • [35] The DTC (difference of tangentially convex functions) programming: optimality conditions
    Mashkoorzadeh, F.
    Movahedian, N.
    Nobakhtian, S.
    TOP, 2022, 30 (02) : 270 - 295
  • [36] MEAN VALUE THEOREM
    GOLDSTEI.AA
    AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (01): : 51 - &
  • [37] ON MEAN VALUE THEOREM
    KARATSUBA, AA
    KOROBOV, NM
    DOKLADY AKADEMII NAUK SSSR, 1963, 149 (02): : 245 - &
  • [38] A CLARKE-LEDYAEV MULTIDIRECTIONAL MEAN VALUE INEQUALITY FOR CONVEX FUNCTIONS
    Hamamdjiev, Mihail
    Zlateva, Nadia
    PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (03): : 625 - 633
  • [39] MILMANS THEOREM FOR CONVEX FUNCTIONS
    BRONDSTE.A
    MATHEMATICA SCANDINAVICA, 1966, 19 (01) : 5 - &
  • [40] REPRESENTATION THEOREM FOR CONVEX FUNCTIONS
    RAKESTRA.RM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A103 - &