Fabrication and Characterization of Polyphosphazene/Calcium Phosphate Scaffolds Containing Chitosan Microspheres for Sustained Release of Bone Morphogenetic Protein 2 in Bone Tissue Engineering

被引:0
|
作者
Adnan Sobhani
Mohammad Rafienia
Mehdi Ahmadian
Mohammad-Reza Naimi-Jamal
机构
[1] Isfahan University of Technology,Biomaterials Research Group, Department of Materials Engineering
[2] Isfahan University of Medical Sciences,Biosensor Research Center
[3] Iran University of Science and Technology,Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry
关键词
Bone tissue engineering; Controlled biodegradation; Sustained release; Polyphosphazenes; Bone morphogenetic proteins;
D O I
暂无
中图分类号
学科分类号
摘要
Bone morphogenetic protein 2 has a major role in promoting bone regeneration in tissue engineering scaffolds. Growth factor release rate is a remaining crucial problem in these systems. The aim of this study was to fabricate and characterize a novel calcium phosphate/polyphosphazenes porous scaffold for the sustained release of bone morphogenetic protein 2 in bone tissue engineering. Polyphosphazenes were substituted with 2-dimethylaminoethanol and evaluated by GPC, NMR, and in vitro degradation. Calcium phosphate porous samples were prepared from hydroxyapatite nanoparticles and naphthalene using the sintering method at 1250 °C before being composited with poly(dimethylaminoethanol)phosphazenes containing chitosan microspheres loaded with bone morphogenetic protein 2. The characteristics and biodegradability of the product were evaluated by SEM, XRD, and in vitro degradation. Moreover, the release rate and mechanical properties of the scaffolds were investigated. The release behavior was found to be sustained since the scaffolds had been fabricated from polyphosphazenes with a low degradation rate. The release rates of the scaffolds were observed to increase with increasing chitosan microspheres content from 10 to 30%. The bioactivity of the scaffolds depended on the release rate of growth factor while bone morphogenetic protein 2 was able to induce an osteoblast proliferation. The results of cell adhesion and cell viability tests showed that scaffolds displayed a non-toxic behavior and western blot analyses confirmed that the scaffolds loaded with growth factor increased the osteogenic differentiation potential of cells when compared with scaffolds alone. These results demonstrate that these scaffolds can be successfully utilized in bone tissue engineering.
引用
收藏
页码:525 / 538
页数:13
相关论文
共 50 条
  • [41] Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering
    Zhang, Y
    Zhang, MQ
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2001, 55 (03): : 304 - 312
  • [42] Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering
    Bi, Yong-guang
    Lin, Zi-ting
    Deng, Shi-ting
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 100 : 576 - 583
  • [43] Processing of porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics for bone tissue engineering
    Lee, Joo-Hyeok
    Choi, Hong-Jun
    Yoon, Seog-Young
    Kim, Byung-Kyu
    Park, Hong-Chae
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2013, 14 (04): : 544 - 548
  • [44] Fabrication and characterization of electrospun osteon mimicking scaffolds for bone tissue engineering
    Andric, T.
    Sampson, A. C.
    Freeman, J. W.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2011, 31 (01): : 2 - 8
  • [45] Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering
    Sainitya, R.
    Sriram, M.
    Kayanaraman, V.
    Dhivya, S.
    Saravanan, S.
    Vairamani, M.
    Sastry, T. P.
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2015, 80 : 481 - 488
  • [46] Chitosan scaffolds containing chicken feather keratin nanoparticles for bone tissue engineering
    Saravanan, S.
    Sameera, D. K.
    Moorthi, A.
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2013, 62 : 481 - 486
  • [47] Bone Regeneration of Rat Calvarial Defect by Magnesium Calcium Phosphate Gelatin Scaffolds with or without Bone Morphogenetic Protein-2
    Hussain A.
    Takahashi K.
    Sonobe J.
    Tabata Y.
    Bessho K.
    Journal of Maxillofacial and Oral Surgery, 2014, 13 (1) : 29 - 35
  • [48] Use of calcium phosphate cement scaffolds for bone tissue engineering: in vitro study
    Novaes Silva, Tais Somacal
    Primo, Bruno Tochetto
    Silva Junior, Aurelicio Novaes
    Machado, Denise Cantarelli
    Viezzer, Christian
    Santos, Luis Alberto
    ACTA CIRURGICA BRASILEIRA, 2011, 26 (01) : 7 - 11
  • [49] Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering
    Bakhtiari, Leila
    Rezaie, Hamid Reza
    Hosseinalipour, Seyed Mohamad
    Shokrgozar, Mohamad Ali
    CERAMICS INTERNATIONAL, 2010, 36 (08) : 2421 - 2426
  • [50] Calcium Phosphate Coated Electrospun Fiber Matrices as Scaffolds for Bone Tissue Engineering
    Nandakumar, Anandkumar
    Yang, Liang
    Habibovic, Pamela
    van Blitterswijk, Clemens
    LANGMUIR, 2010, 26 (10) : 7380 - 7387