On the Sum of Narrow Orthogonally Additive Operators

被引:0
|
作者
N. M. Abasov
机构
[1] Moscow Aviation Institute (National Research University),
来源
Russian Mathematics | 2020年 / 64卷
关键词
vector lattice; orthogonally additive operator; narrow operator; laterally-to-norm continuous operator; -compact operator. ;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we consider orthogonally additive operators defined on a vector lattice E and taking value in a Banach space X. We say that an orthogonally additive operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T:E\to X$\end{document} is narrow if for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e\in E$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon>0$\end{document} there exists a decomposition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e=e_1\sqcup e_2$\end{document} of e into a sum of two disjoint fragments e1 and e2 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|Te_1-Te_2\|<\varepsilon$\end{document}. It is proved that the sum of two orthogonally additive operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S+T$\end{document} defined on a Dedekind complete, atomless vector lattice and taking value in a Banach space, where S is a narrow operator and T is a C-compact laterally-to-norm continuous operator, is a narrow operator, too.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [41] On orthogonally additive operators in C-complete vector lattices
    Erkursun-Ozcan, Nazife
    Pliev, Marat
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (01)
  • [42] DISJOINTNESS-PRESERVING ORTHOGONALLY ADDITIVE OPERATORS IN VECTOR LATTICES
    Abasov, Nariman
    Pliev, Marat
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (03): : 730 - 750
  • [43] On orthogonally additive operators in C-complete vector lattices
    Nazife Erkurşun-Özcan
    Marat Pliev
    Banach Journal of Mathematical Analysis, 2022, 16
  • [44] DOMINATED ORTHOGONALLY ADDITIVE OPERATORS IN LATTICE-NORMED SPACES
    Abasov, Nariman
    Pliev, Marat
    ADVANCES IN OPERATOR THEORY, 2019, 4 (01): : 251 - 264
  • [45] ε-Shading Operator on Riesz Spaces and Order Continuity of Orthogonally Additive Operators
    Mykhaylyuk, V
    Popov, M.
    RESULTS IN MATHEMATICS, 2022, 77 (05)
  • [46] The Lateral Order on Vector Lattices and Orthogonally Bi-additive Operators
    Dzhusoeva, Nonna
    Timofeeva, Alisa
    RESULTS IN MATHEMATICS, 2025, 80 (03)
  • [47] The lateral order on Riesz spaces and orthogonally additive operators. II
    Volodymyr Mykhaylyuk
    Marat Pliev
    Mikhail Popov
    Positivity, 2024, 28
  • [48] The lateral order on Riesz spaces and orthogonally additive operators. II
    Mykhaylyuk, Volodymyr
    Pliev, Marat
    Popov, Mikhail
    POSITIVITY, 2024, 28 (01)
  • [49] The lateral order on Köthe-Bochner spaces and orthogonally additive operators
    Pliev, Marat
    Abasov, Nariman
    Dzhusoeva, Nonna
    ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (03)