On the Sum of Narrow Orthogonally Additive Operators

被引:0
|
作者
N. M. Abasov
机构
[1] Moscow Aviation Institute (National Research University),
来源
Russian Mathematics | 2020年 / 64卷
关键词
vector lattice; orthogonally additive operator; narrow operator; laterally-to-norm continuous operator; -compact operator. ;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we consider orthogonally additive operators defined on a vector lattice E and taking value in a Banach space X. We say that an orthogonally additive operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T:E\to X$\end{document} is narrow if for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e\in E$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varepsilon>0$\end{document} there exists a decomposition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e=e_1\sqcup e_2$\end{document} of e into a sum of two disjoint fragments e1 and e2 such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|Te_1-Te_2\|<\varepsilon$\end{document}. It is proved that the sum of two orthogonally additive operators \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S+T$\end{document} defined on a Dedekind complete, atomless vector lattice and taking value in a Banach space, where S is a narrow operator and T is a C-compact laterally-to-norm continuous operator, is a narrow operator, too.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条