On n-Cyclic Groups

被引:0
|
作者
Ali Reza Ashrafi
Elaheh Haghi
机构
[1] University of Kashan,Department of Pure Mathematics, Faculty of Mathematical Sciences
关键词
-cyclic group; Simple group; Element order; 20D25;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and c(G) denote the number of cyclic subgroups of G. The group G is called an n-cyclic group if c(G)=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(G) = n$$\end{document}. In an earlier paper, finite n-cyclic groups with n≤8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \le 8$$\end{document} are classified and a characterization of the alternating group on five symbols based on the number of cyclic subgroups is given. The aim of this article is to continue this work by presenting a characterization of the simple group PSL(2, 7), by the number of cyclic subgroups. It is also proved that G is a 9-cyclic group if and only if G≅D14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \cong D_{14}$$\end{document}, Z5:Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_5:Z_4$$\end{document}, Z7:Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_7:Z_3$$\end{document}, Z3:Z8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_3:Z_8$$\end{document}, Z7×Z7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_7 \times Z_7$$\end{document}, Zp2q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{p^2q^2}$$\end{document} and Zp8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{p^8}$$\end{document}, where p and q are different primes, and G is 10-cyclic group if and only if G≅D12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \cong D_{12}$$\end{document}, SD16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SD_{16}$$\end{document}, Z4:Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_4:Z_4$$\end{document}, Z4×Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_4 \times Z_4$$\end{document}, Z16:Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{16}:Z_2$$\end{document}, Z16×Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{16} \times Z_2$$\end{document}, Z2×Q8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_2 \times Q_8$$\end{document}, Z3r×Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{3r} \times Z_3$$\end{document}, Zr×S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_r \times S_3$$\end{document}, Zp×Q8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_p \times Q_8$$\end{document} and Zp4q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{p^4q}$$\end{document}, where p, q, r are primes and r≠3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \ne 3$$\end{document}.
引用
收藏
页码:3233 / 3246
页数:13
相关论文
共 50 条
  • [21] Urotensin-II receptor antagonists: Synthesis and SAR of N-cyclic azaalkyl benzamides
    Jin, Jian
    An, Ming
    Sapienza, Anthony
    Aiyar, Nambi
    Naselsky, Diane
    Sarau, Henry M.
    Foley, James J.
    Salyers, Kevin L.
    Knight, Steven D.
    Keenan, Richard M.
    Rivero, Ralph A.
    Dhanak, Dashyant
    Douglas, Stephen A.
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2008, 18 (14) : 3950 - 3954
  • [22] Synthesis of novel hydantoin, arylidene-hydantoin N-cyclic and acyclic-nucleosides
    Aly, Youssef Lotfy
    [J]. AFINIDAD, 2006, 63 (522) : 143 - 148
  • [23] Anion exchange membranes with twisted poly(terphenylene) backbone: Effect of the N-cyclic cations
    Wang, Xiuqin
    Lin, Chenxiao
    Gao, Yang
    Lammertink, Rob G. H.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2021, 635
  • [24] The (3+2)- and formal (3+3)-cycloadditions of N-vinylpyrroles with cyclic nitrones and C,N-cyclic azomethine imines
    Afanaseva, Kseniia K.
    Efremova, Mariia M.
    Kuznetsova, Svetlana, V
    Ivanov, Andrey, V
    Starova, Galina L.
    Molchanov, Alexander P.
    [J]. TETRAHEDRON, 2018, 74 (39) : 5665 - 5673
  • [25] Cardopoly(arylene ether sulfone)s membranes bearing N-cyclic cationic groups enable high performance during both diffusion dialysis and electrodialysis
    Xia, Wenke
    Yang, Yimou
    Shang, Xingjie
    Yang, Xuan
    Wang, Shu
    Gong, Feixiang
    Wang, Lei
    Wang, Xudong
    Chen, Xinbing
    [J]. DESALINATION, 2022, 529
  • [26] Synthesis and (3+2) cycloaddition reactions of N,N E1 and C,N-cyclic azomethine imines
    Belskaya, Nataliya P.
    Bakulev, Vasiliy A.
    Fan, Zhijin
    [J]. CHEMISTRY OF HETEROCYCLIC COMPOUNDS, 2016, 52 (09) : 627 - 636
  • [27] DFT study on the Stereoselectivity of Asymmetric Synthesis of C, N-Cyclic Azomethine Imines with Allyl Alkyl Ketones
    Feng, Guipeng
    Meng, Jie
    Xu, Shaohong
    Wang, Shujing
    Yao, Xubin
    [J]. CHEMISTRYSELECT, 2024, 9 (08):
  • [28] Catalytic Asymmetric [4+3] Annulation of C,N-Cyclic Azomethine Imines with Copper Allenylidenes
    Wang, Yanfang
    Zhu, Liping
    Wang, Mengran
    Xiong, Jiale
    Chen, Nannan
    Feng, Xing
    Xu, Zhaoqing
    Jiang, Xianxing
    [J]. ORGANIC LETTERS, 2018, 20 (20) : 6506 - 6510
  • [29] Evaluation of polyketones with N-cyclic structure as electrode material for electrochemical energy storage: case of tetraketopiperazine unit
    Geng, Joaquin
    Bonnet, Jean-Pierre
    Renault, Steven
    Dolhem, Franck
    Poizot, Philippe
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (12) : 1929 - 1933
  • [30] Best Proximity Point Results for n-Cyclic and Regular-n-Noncyclic Fisher Quasi-Contractions in Metric Spaces
    Fallahi, Kamal
    Ayobian, Morteza
    Soleimani Rad, Ghasem
    [J]. SYMMETRY-BASEL, 2023, 15 (07):