On n-Cyclic Groups

被引:0
|
作者
Ali Reza Ashrafi
Elaheh Haghi
机构
[1] University of Kashan,Department of Pure Mathematics, Faculty of Mathematical Sciences
关键词
-cyclic group; Simple group; Element order; 20D25;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a finite group and c(G) denote the number of cyclic subgroups of G. The group G is called an n-cyclic group if c(G)=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(G) = n$$\end{document}. In an earlier paper, finite n-cyclic groups with n≤8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \le 8$$\end{document} are classified and a characterization of the alternating group on five symbols based on the number of cyclic subgroups is given. The aim of this article is to continue this work by presenting a characterization of the simple group PSL(2, 7), by the number of cyclic subgroups. It is also proved that G is a 9-cyclic group if and only if G≅D14\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \cong D_{14}$$\end{document}, Z5:Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_5:Z_4$$\end{document}, Z7:Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_7:Z_3$$\end{document}, Z3:Z8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_3:Z_8$$\end{document}, Z7×Z7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_7 \times Z_7$$\end{document}, Zp2q2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{p^2q^2}$$\end{document} and Zp8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{p^8}$$\end{document}, where p and q are different primes, and G is 10-cyclic group if and only if G≅D12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \cong D_{12}$$\end{document}, SD16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SD_{16}$$\end{document}, Z4:Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_4:Z_4$$\end{document}, Z4×Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_4 \times Z_4$$\end{document}, Z16:Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{16}:Z_2$$\end{document}, Z16×Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{16} \times Z_2$$\end{document}, Z2×Q8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_2 \times Q_8$$\end{document}, Z3r×Z3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{3r} \times Z_3$$\end{document}, Zr×S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_r \times S_3$$\end{document}, Zp×Q8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_p \times Q_8$$\end{document} and Zp4q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_{p^4q}$$\end{document}, where p, q, r are primes and r≠3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \ne 3$$\end{document}.
引用
收藏
页码:3233 / 3246
页数:13
相关论文
共 50 条
  • [1] On n-Cyclic Groups
    Ashrafi, Ali Reza
    Haghi, Elaheh
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (06) : 3233 - 3246
  • [2] n-CYCLIC AND n-SUPERSOLVABLE GROUPS
    张宝林
    [J]. Science Bulletin, 1986, (07) : 499 - 500
  • [3] RANDOMLY N-CYCLIC DIGRAPHS
    CHARTRAND, G
    OELLERMANN, OR
    RUIZ, S
    [J]. GRAPHS AND COMBINATORICS, 1985, 1 (01) : 29 - 40
  • [4] ON RANDOMLY N-CYCLIC DIGRAPHS
    EGAWA, Y
    MIYAMOTO, T
    RUIZ, S
    [J]. GRAPHS AND COMBINATORICS, 1987, 3 (03) : 227 - 238
  • [5] REPRESENTATIONS OF N-CYCLIC GROUPOIDS
    ROMANOWSKA, A
    ROSZKOWSKA, B
    [J]. ALGEBRA UNIVERSALIS, 1989, 26 (01) : 7 - 15
  • [6] N-CYCLIC ELEMENTS .1.
    SIMON, AB
    [J]. DUKE MATHEMATICAL JOURNAL, 1957, 24 (01) : 1 - 7
  • [7] N-CYCLIC PROGRAMMING IN A MANUFACTURING LINE WITH GANTRY CRANE
    Mateo Doll, Manuel
    Companys Pascual, Ramon
    [J]. DIRECCION Y ORGANIZACION, 2008, 35 : 23 - 29
  • [8] Recent Developments of Reactions with C,N-Cyclic Azomethine Imines
    Hua, Tingbi
    Yang, Qingqing
    Xiao, Wengjing
    [J]. CHINESE JOURNAL OF ORGANIC CHEMISTRY, 2020, 40 (11) : 3559 - 3595
  • [9] SPANNING SIMPLICIAL COMPLEXES OF n-CYCLIC GRAPHS WITH A COMMON EDGE
    Zhu, Guangjun
    Shi, Feng
    Geng, Yuxian
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2014, 15 : 132 - 144
  • [10] Prym varieties associated with n-cyclic covers of a hyperelliptic curve
    Ortega, A
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2003, 245 (01) : 97 - 103