Improvement of ferulic acid bioconversion into vanillin by use of high-density cultures of Pycnoporus cinnabarinus

被引:0
|
作者
J. Oddou
C. Stentelaire
L. Lesage-Meessen
M. Asther
B. Colonna Ceccaldi
机构
[1] Pernod-Ricard,
[2] Centre de Recherche,undefined
[3] Laboratoire de Technologie,undefined
[4] 120 Avenue du Maréchal Foch,undefined
[5] 94015 Créteil,undefined
[6] France e-mail: cerpri1@easynet.fr Fax: +33 1 49 81 52 00,undefined
[7] Laboratoire de Biotechnologie des Champignons Filamenteux,undefined
[8] INRA,undefined
[9] Centre d'Enseignement Supérieur en Biotechnologie,undefined
[10] ESIL,undefined
[11] Faculté des sciences de Luminy,undefined
[12] 163 Avenue de Luminy,undefined
[13] Case Postale 925,undefined
[14] 13288 Marseille cedex 09,undefined
[15] France,undefined
来源
关键词
Glucose; Alcohol; Carbon Source; Fructose; Maltose;
D O I
暂无
中图分类号
学科分类号
摘要
High-density cultures of Pycnoporus cinnabarinus were tested with a view to optimisation of ferulic acid bioconversion into vanillin. The dry weight was increased fourfold by using glucose, fructose or a mixture of glucose and phospholipids as carbon source instead of maltose, the carbon source previously used. 5 mmol l−1 vanillin, i.e. 760 mg l−1, was produced over 15 days with glucose-phospholipid medium. In contrast, formation of vanillin was lower using glucose or fructose compared to the maltose control. A bioreactor (2 l) with a glucose-phospholipid medium gave a molar yield of vanillin of 61% (4 mmol l−1). An alternative strategy was to grow the fungus on a glucose or fructose medium for 3 days, then switch to maltose during the bioconversion phase: this method allowed 3.3 mmol l−1 vanillin to be obtained in 10 days. Many by-products such as methoxyhydroquinone and vanillyl alcohol were also produced.
引用
收藏
页码:1 / 6
页数:5
相关论文
共 50 条
  • [41] Two-tier vessel for photoautotrophic high-density cultures
    Lars Bähr
    Arne Wüstenberg
    Rudolf Ehwald
    Journal of Applied Phycology, 2016, 28 : 783 - 793
  • [42] CARTILAGE RESPONSE TO MECHANICAL FORCE IN HIGH-DENSITY CHONDROCYTE CULTURES
    VANKAMPEN, GPJ
    VELDHUIJZEN, JP
    KUIJER, R
    VANDESTADT, RJ
    SCHIPPER, CA
    ARTHRITIS AND RHEUMATISM, 1985, 28 (04): : 419 - 424
  • [43] High-Density Microcarrier Cell Cultures for Influenza Virus Production
    Bock, A.
    Schulze-Horsel, J.
    Schwarzer, J.
    Rapp, E.
    Genzel, Y.
    Reichl, U.
    BIOTECHNOLOGY PROGRESS, 2011, 27 (01) : 241 - 250
  • [44] On the Improper Use of the Term High-Density Neutrophils
    Cassatella, Marco A.
    Scapini, Patrizia
    TRENDS IN IMMUNOLOGY, 2020, 41 (12) : 1059 - 1061
  • [45] Improvement of Thermal Interference for High-Density Thermal Recording Mastering
    Murakami, Shigenori
    Yamaoka, Nobuki
    Matsukawa, Makoto
    Sugawara, Yukihiro
    Jinno, Satoshi
    Takishita, Toshihiko
    Yokogawa, Fumihiko
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (09)
  • [46] Maize root system architecture improvement for high-density planting
    Ren, Wei
    Mi, Guohua
    Pan, Qingchun
    NATURE PLANTS, 2022, 8 (12) : 1337 - 1338
  • [48] Method development for simultaneous detection of ferulic acid and vanillin using high-performance thin layer chromatography
    Hingse S.S.
    Digole S.B.
    Annapure U.S.
    Journal of Analytical Science and Technology, 5 (1)
  • [49] Protein production by auto-induction in high-density shaking cultures
    Studier, FW
    PROTEIN EXPRESSION AND PURIFICATION, 2005, 41 (01) : 207 - 234
  • [50] High-density Escherichia coli cultures for continuous L(-)-carnitine production
    Obón, JM
    Maiquez, JR
    Cánovas, M
    Kleber, HP
    Iborra, JL
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1999, 51 (06) : 760 - 764