Continuous ranking on uncertain streams

被引:0
|
作者
Cheqing Jin
Jingwei Zhang
Aoying Zhou
机构
[1] East China Normal University,Shanghai Key Laboratory of Trustworthy Computing, Software Engineering Institute
来源
关键词
possible world semantics; uncertain data stream; continuous ranking query; sampling;
D O I
暂无
中图分类号
学科分类号
摘要
Data uncertainty widely exists in many web applications, financial applications and sensor networks. Ranking queries that return a number of tuples with maximal ranking scores are important in the field of database management. Most existing work focuses on proposing static solutions for various ranking semantics over uncertain data. Our focus is to handle continuous ranking queries on uncertain data streams: testing each new tuple to output highly-ranked tuples. The main challenge comes from not only the fact that the possible world space will grow exponentially when new tuples arrive, but also the requirement for low space- and time-complexity to adapt to the streaming environments. This paper aims at handling continuous ranking queries on uncertain data streams. We first study how to handle this issue exactly, then we propose a novel method (exponential sampling) to estimate the expected rank of a tuple with high quality. Analysis in theory and detailed experimental reports evaluate the proposed methods.
引用
收藏
页码:686 / 699
页数:13
相关论文
共 50 条
  • [41] The Ordinal Consensus Ranking Problem with Uncertain Rankings
    Mazurek, Jiri
    [J]. PROCEEDINGS OF 30TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS, PTS I AND II, 2012, : 552 - 557
  • [42] Efficient Probabilistic Query Ranking in Uncertain Databases
    Katukoori, Divya
    Bhima, K.
    Sri, T. Aruna
    Chowdary, S. Hemanth
    Bhattacharya, Sujoy
    [J]. GLOBAL TRENDS IN COMPUTING AND COMMUNICATION SYSTEMS, PT 1, 2012, 269 : 169 - 177
  • [43] Probabilistic inverse ranking queries in uncertain databases
    Lian, Xiang
    Chen, Lei
    [J]. VLDB JOURNAL, 2011, 20 (01): : 107 - 127
  • [44] Supporting ranking queries on uncertain and incomplete data
    Mohamed A. Soliman
    Ihab F. Ilyas
    Shalev Ben-David
    [J]. The VLDB Journal, 2010, 19 : 477 - 501
  • [45] Scalable Probabilistic Similarity Ranking in Uncertain Databases
    Bernecker, Thomas
    Kriegel, Hans-Peter
    Mamoulis, Nikos
    Renz, Matthias
    Zuefle, Andreas
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (09) : 1234 - 1246
  • [46] Efficient fuzzy ranking queries in uncertain databases
    Chuanfei Xu
    Yanqiu Wang
    Yu Gu
    Shukuan Lin
    Ge Yu
    [J]. Applied Intelligence, 2012, 37 : 47 - 59
  • [47] Supporting ranking queries on uncertain and incomplete data
    Soliman, Mohamed A.
    Ilyas, Ihab F.
    Ben-David, Shalev
    [J]. VLDB JOURNAL, 2010, 19 (04): : 477 - 501
  • [48] Ranking Continuous Probabilistic Datasets
    Li, Jian
    Deshpande, Amol
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2010, 3 (01): : 638 - 649
  • [49] PROBABILISTIC QUERYING OVER UNCERTAIN DATA STREAMS
    Dezfuli, Mohammad G.
    Haghjoo, Mostafa S.
    [J]. INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2012, 20 (05) : 701 - 728
  • [50] CLARO: modeling and processing uncertain data streams
    Tran, Thanh T. L.
    Peng, Liping
    Diao, Yanlei
    McGregor, Andrew
    Liu, Anna
    [J]. VLDB JOURNAL, 2012, 21 (05): : 651 - 676