On the simplicity of Jacobians for hyperelliptic curves of genus 2 over the field of rational numbers with torsion points of high order

被引:0
|
作者
V. P. Platonov
V. S. Zhgun
M. M. Petrunin
机构
[1] Russian Academy of Sciences,Scientific Research Institute for System Studies
来源
Doklady Mathematics | 2013年 / 87卷
关键词
Characteristic Polynomial; Elliptic Curf; Galois Group; DOKLADY Mathematic; Abelian Variety;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:318 / 321
页数:3
相关论文
共 50 条
  • [31] A database of genus-2 curves over the rational numbers
    Booker, Andrew R.
    Sijsling, Jeroen
    Sutherland, Andrew V.
    Voight, John
    Yasaki, Dan
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2016, 19 : 235 - 254
  • [33] Large torsion subgroups of split Jacobians of curves of genus 2
    Howe, EW
    Leprevost, F
    Poonen, B
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (09): : 1031 - 1034
  • [34] Genus-2 curves and Jacobians with a given number of points
    Broeker, Reinier
    Howe, Everett W.
    Lauter, Kristin E.
    Stevenhagen, Peter
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2015, 18 (01): : 170 - 197
  • [35] CURVES OF GENUS-2 WITH A RATIONAL TORSION DIVISOR OF ORDER-23
    OGAWA, H
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1994, 70 (09) : 295 - 298
  • [36] Jacobians of algebraic curves of genus 2 and 3 with high rank over Q
    Kulesz, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 : 288 - 298
  • [37] Counting points on hyperelliptic curves of genus 2 with real models
    Uchida, Yukihiro
    JSIAM LETTERS, 2019, 11 : 1 - 4
  • [38] Rational curves with many rational points over a finite field
    Fukasawa, Satoru
    Homma, Masaaki
    Kim, Seon Jeong
    ARITHMETIC, GEOMETRY, CRYPTOGRAPHY AND CODING THEORY, 2012, 574 : 37 - +
  • [39] On the torsion of the Jacobians of the hyperelliptic curves y2 = xn + a and y2 = x (xn + a)
    Jedrzejak, Tomasz
    ACTA ARITHMETICA, 2016, 174 (02) : 99 - 120
  • [40] Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points
    Colliot-Thelene, JL
    Skorobogatov, AN
    Swinnerton-Dyer, P
    INVENTIONES MATHEMATICAE, 1998, 134 (03) : 579 - 650