Spectral properties of the Schrödinger operator with δ-distribution

被引:0
|
作者
M. Nursultanov
机构
[1] Chalmers University of Technology,
[2] University of Gothenburg,undefined
来源
Mathematical Notes | 2016年 / 100卷
关键词
Schrödinger operator; semiboundedness below of the distribution functions of eigenvalues; discreteness of the spectrum of the Schrödinger operator; point interactions;
D O I
暂无
中图分类号
学科分类号
摘要
For the one-dimensional Schrödinger operator with δ-interactions, two-sided estimates of the distribution function of the eigenvalues and a criterion for the discreteness of the spectrum in terms of the Otelbaev function are obtained. A criterion for the resolvent of the Schrödinger operator to belong to the class Sp is established.
引用
收藏
页码:263 / 275
页数:12
相关论文
共 50 条
  • [41] On the Discreteness of the Spectrum of the magnetic Schrödinger operator
    A. R. Aliev
    E. H. Eyvazov
    Functional Analysis and Its Applications, 2012, 46 : 305 - 307
  • [42] Local Perturbations of the Schrödinger Operator on the Axis
    R. R. Gadyl'shin
    Theoretical and Mathematical Physics, 2002, 132 : 976 - 982
  • [43] Dirichlet problem for the Schrödinger operator on a cone
    Lei Qiao
    Guan-Tie Deng
    Boundary Value Problems, 2012
  • [44] Reduction of the dressing chain of the Schrödinger operator
    M. Yu. Kulikov
    V. S. Novikov
    Theoretical and Mathematical Physics, 2000, 123 : 768 - 775
  • [45] Symmetries of Schrödinger Operator with Point Interactions
    S. Albeverio
    L. Dabrowski
    P. Kurasov
    Letters in Mathematical Physics, 1998, 45 : 33 - 47
  • [46] Extrinsic estimates for the eigenvalues of Schrödinger operator
    Guangyue Huang
    Xingxiao Li
    Ruiwei Xu
    Geometriae Dedicata, 2009, 143 : 89 - 107
  • [47] Local Perturbations of the Schrödinger Operator on the Plane
    R. R. Gadyl'shin
    Theoretical and Mathematical Physics, 2004, 138 : 33 - 44
  • [48] On 4-order Schrödinger operator and Beam operator
    Dan Li
    Junfeng Li
    Frontiers of Mathematics in China, 2019, 14 : 1197 - 1211
  • [49] Maximum Principle for the Regularized Schrödinger Operator
    R. S. Kraußhar
    M. M. Rodrigues
    N. Vieira
    Results in Mathematics, 2016, 69 : 49 - 68
  • [50] On Schrödinger Propagator for the Special Hermite Operator
    P. K. Ratnakumar
    Journal of Fourier Analysis and Applications, 2008, 14 : 286 - 300