Slit Holomorphic Stochastic Flows and Gaussian Free Field

被引:0
|
作者
Georgy Ivanov
Nam-Gyu Kang
Alexander Vasil’ev
机构
[1] University of Bergen,Department of Mathematics
[2] Korea Institute of Advanced Study,School of Mathematics
来源
关键词
Slit holomorphic stochastic flows; SLE; Gaussian free field; 30C35; 34M99; 60D05; 60J67;
D O I
暂无
中图分类号
学科分类号
摘要
It was realized recently that the chordal, radial and dipolar Schramm–Löwner evolution (SLEs) are special cases of a general slit holomorphic stochastic flow. We characterize those slit holomorphic stochastic flows which generate level lines of the Gaussian free field. In particular, we describe the modifications of the Gaussian free field (GFF) corresponding to the chordal and dipolar SLE with drifts. Finally, we develop a version of conformal field theory based on the background charge and Dirichlet boundary condition modifications of GFF and present martingale-observables for these types of SLEs.
引用
收藏
页码:1591 / 1617
页数:26
相关论文
共 50 条
  • [31] STOCHASTIC APPROACH TO NOISE MODELING FOR FREE TURBULENT FLOWS
    BECHARA, W
    BAILLY, C
    LAFON, P
    CANDEL, SM
    AIAA JOURNAL, 1994, 32 (03) : 455 - 463
  • [32] Holomorphic flows, cocycles, and coboundaries
    Jafari, F
    Tonev, T
    Toneva, E
    Yale, K
    MICHIGAN MATHEMATICAL JOURNAL, 1997, 44 (02) : 239 - 253
  • [33] INVARIANTS OF HOLOMORPHIC AFFINE FLOWS
    SNOW, DM
    ARCHIV DER MATHEMATIK, 1987, 49 (05) : 440 - 449
  • [34] ON THE RADIUS OF GAUSSIAN FREE FIELD EXCURSION CLUSTERS
    Goswami, Subhajit
    Rodriguez, Pierre-Francois
    Severo, Franco
    ANNALS OF PROBABILITY, 2022, 50 (05): : 1675 - 1724
  • [35] The Noise in the Circular Law and the Gaussian Free Field
    Rider, Brian
    Virag, Balint
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [36] A contour line of the continuum Gaussian free field
    Oded Schramm
    Scott Sheffield
    Probability Theory and Related Fields, 2013, 157 : 47 - 80
  • [37] Analyticity of Gaussian Free Field Percolation Observables
    Panagiotis, Christoforos
    Severo, Franco
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 396 (01) : 187 - 223
  • [38] GAUSSIAN FREE FIELD LIGHT CONES AND SLEκ (ρ)
    Miller, Jason
    Sheffield, Scott
    ANNALS OF PROBABILITY, 2019, 47 (06): : 3606 - 3648
  • [39] On thin local sets of the Gaussian free field
    Sepulveda, Avelio
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (03): : 1797 - 1813
  • [40] The discrete Gaussian free field on a compact manifold
    Cipriani, Alessandra
    van Ginkel, Bart
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) : 3943 - 3966