Slit Holomorphic Stochastic Flows and Gaussian Free Field

被引:0
|
作者
Georgy Ivanov
Nam-Gyu Kang
Alexander Vasil’ev
机构
[1] University of Bergen,Department of Mathematics
[2] Korea Institute of Advanced Study,School of Mathematics
来源
关键词
Slit holomorphic stochastic flows; SLE; Gaussian free field; 30C35; 34M99; 60D05; 60J67;
D O I
暂无
中图分类号
学科分类号
摘要
It was realized recently that the chordal, radial and dipolar Schramm–Löwner evolution (SLEs) are special cases of a general slit holomorphic stochastic flow. We characterize those slit holomorphic stochastic flows which generate level lines of the Gaussian free field. In particular, we describe the modifications of the Gaussian free field (GFF) corresponding to the chordal and dipolar SLE with drifts. Finally, we develop a version of conformal field theory based on the background charge and Dirichlet boundary condition modifications of GFF and present martingale-observables for these types of SLEs.
引用
收藏
页码:1591 / 1617
页数:26
相关论文
共 50 条
  • [1] Slit Holomorphic Stochastic Flows and Gaussian Free Field
    Ivanov, Georgy
    Kang, Nam-Gyu
    Vasil'ev, Alexander
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (07) : 1591 - 1617
  • [2] Transformations of Gaussian measures by stochastic flows
    Tolmachev, NA
    Khitruk, FA
    DOKLADY MATHEMATICS, 2004, 70 (03) : 918 - 923
  • [3] Gaussian structure in coalescing stochastic flows
    Dorogovtsev, A. A.
    Hlyniana, K. V.
    STOCHASTICS AND DYNAMICS, 2023, 23 (06)
  • [4] The Gaussian Free Field
    Le Jan, Yves
    MARKOV PATHS, LOOPS AND FIELDS: SAINT-FLOUR PROBABILITY SUMMER SCHOOL XXXVIII-2008, 2011, 2026 : 47 - 56
  • [5] Identification of conditional stochastic Gaussian field
    Hoshiya, M
    Yoshida, I
    JOURNAL OF ENGINEERING MECHANICS, 1996, 122 (02) : 101 - 108
  • [6] A characterisation of the Gaussian free field
    Nathanaël Berestycki
    Ellen Powell
    Gourab Ray
    Probability Theory and Related Fields, 2020, 176 : 1259 - 1301
  • [7] A characterisation of the Gaussian free field
    Berestycki, Nathanael
    Powell, Ellen
    Ray, Gourab
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 176 (3-4) : 1259 - 1301
  • [8] Dominos and the Gaussian free field
    Kenyon, R
    ANNALS OF PROBABILITY, 2001, 29 (03): : 1128 - 1137
  • [9] On generalized Gaussian free fields and stochastic homogenization
    Gu, Yu
    Mourrat, Jean-Christophe
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [10] GAUSSIAN FREE FIELD AND CONFORMAL FIELD THEORY
    Kang, Nam-Gyu
    Makarov, Nikolai G.
    ASTERISQUE, 2013, (353) : 1 - +