Tightness in contact metric 3-manifolds

被引:0
|
作者
John B. Etnyre
Rafal Komendarczyk
Patrick Massot
机构
[1] Georgia Institute of Technology,School of Mathematics
[2] Tulane University,Department of Mathematics
[3] Université Paris Sud 11,Département de Mathématiques
来源
Inventiones mathematicae | 2012年 / 188卷
关键词
Sectional Curvature; Contact Structure; Contact Form; Characteristic Foliation; Nonpositive Curvature;
D O I
暂无
中图分类号
学科分类号
摘要
This paper begins the study of relations between Riemannian geometry and global properties of contact structures on 3-manifolds. In particular we prove an analog of the sphere theorem from Riemannian geometry in the setting of contact geometry. Specifically, if a given three dimensional contact manifold (M,ξ) admits a complete compatible Riemannian metric of positive 4/9-pinched curvature then the underlying contact structure ξ is tight; in particular, the contact structure pulled back to the universal cover is the standard contact structure on S3. We also describe geometric conditions in dimension three for ξ to be universally tight in the nonpositive curvature setting.
引用
收藏
页码:621 / 657
页数:36
相关论文
共 50 条
  • [21] Geodesible contact structures on 3-manifolds
    Massot, Patrick
    GEOMETRY & TOPOLOGY, 2008, 12 : 1729 - 1776
  • [22] Loops of Legendrians in Contact 3-Manifolds
    Fernandez, Eduardo
    Martinez-Aguinaga, Javier
    Presas, Francisco
    CLASSICAL AND QUANTUM PHYSICS: 60 YEARS ALBERTO IBORT FEST GEOMETRY, DYNAMICS, AND CONTROL, 2019, 229 : 361 - 372
  • [23] Normal contact structures on 3-manifolds
    Geiges, H
    TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (03) : 415 - 422
  • [24] Biminimal submanifolds in contact 3-manifolds
    Inoguchi, Jun-ichi
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2007, 12 (01): : 56 - 67
  • [25] INVARIANT CONTACT FORMS ON 3-MANIFOLDS
    MONNA, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 298 (12): : 281 - 283
  • [26] Contact 3-Manifolds and Symplectic Fillings
    Wendl, Chris
    HOLOMORPHIC CURVES IN LOW DIMENSIONS: FROM SYMPLECTIC RULED SURFACES TO PLANAR CONTACT MANIFOLDS, 2018, 2216 : 241 - 273
  • [27] The curvature of contact structures on 3-manifolds
    Krouglov, Vladimir
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2008, 8 (03): : 1567 - 1579
  • [28] Embedding fillings of contact 3-manifolds
    Ozbagci, Burak
    EXPOSITIONES MATHEMATICAE, 2006, 24 (02) : 161 - 183
  • [29] PSEUDO-HERMITIAN MAGNETIC CURVES IN NORMAL ALMOST CONTACT METRIC 3-MANIFOLDS
    Lee, Ji-Eun
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 35 (04): : 1269 - 1281
  • [30] BRAIDING KNOTS IN CONTACT 3-MANIFOLDS
    Pavelescu, Elena
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 253 (02) : 475 - 487